Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevath Structured version   Visualization version   GIF version

Theorem cevath 46874
Description: Ceva's theorem. Let 𝐴𝐵𝐶 be a triangle and let points 𝐹, 𝐷 and 𝐸 lie on sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐴 correspondingly. Suppose that cevians 𝐴𝐷, 𝐵𝐸 and 𝐶𝐹 intersect at one point 𝑂. Then triangle's sides are partitioned into segments and their lengths satisfy a certain identity. Here we obtain a bit stronger version by using complex numbers themselves instead of their absolute values.

The proof goes by applying cevathlem2 46873 three times and then using cevathlem1 46872 to multiply obtained identities and prove the theorem.

In the theorem statement we are using function 𝐺 as a collinearity indicator. For justification of that use, see sigarcol 46869. This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017.)

Hypotheses
Ref Expression
cevath.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
cevath.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevath.b (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
cevath.c (𝜑𝑂 ∈ ℂ)
cevath.d (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
cevath.e (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
cevath.f (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
Assertion
Ref Expression
cevath (𝜑 → (((𝐴𝐹) · (𝐶𝐸)) · (𝐵𝐷)) = (((𝐹𝐵) · (𝐸𝐴)) · (𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑂,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem cevath
StepHypRef Expression
1 cevath.sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 cevath.a . . . . . . 7 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
32simp2d 1143 . . . . . 6 (𝜑𝐵 ∈ ℂ)
4 cevath.c . . . . . 6 (𝜑𝑂 ∈ ℂ)
53, 4subcld 11540 . . . . 5 (𝜑 → (𝐵𝑂) ∈ ℂ)
62simp3d 1144 . . . . . 6 (𝜑𝐶 ∈ ℂ)
76, 4subcld 11540 . . . . 5 (𝜑 → (𝐶𝑂) ∈ ℂ)
85, 7jca 511 . . . 4 (𝜑 → ((𝐵𝑂) ∈ ℂ ∧ (𝐶𝑂) ∈ ℂ))
91, 8sigarimcd 46867 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐶𝑂)) ∈ ℂ)
102simp1d 1142 . . . 4 (𝜑𝐴 ∈ ℂ)
11 cevath.b . . . . 5 (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
1211simp1d 1142 . . . 4 (𝜑𝐹 ∈ ℂ)
1310, 12subcld 11540 . . 3 (𝜑 → (𝐴𝐹) ∈ ℂ)
1410, 4subcld 11540 . . . . 5 (𝜑 → (𝐴𝑂) ∈ ℂ)
157, 14jca 511 . . . 4 (𝜑 → ((𝐶𝑂) ∈ ℂ ∧ (𝐴𝑂) ∈ ℂ))
161, 15sigarimcd 46867 . . 3 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) ∈ ℂ)
179, 13, 163jca 1128 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) ∈ ℂ ∧ (𝐴𝐹) ∈ ℂ ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ∈ ℂ))
1812, 3subcld 11540 . . 3 (𝜑 → (𝐹𝐵) ∈ ℂ)
1914, 5jca 511 . . . 4 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐵𝑂) ∈ ℂ))
201, 19sigarimcd 46867 . . 3 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ)
2111simp3d 1144 . . . 4 (𝜑𝐸 ∈ ℂ)
226, 21subcld 11540 . . 3 (𝜑 → (𝐶𝐸) ∈ ℂ)
2318, 20, 223jca 1128 . 2 (𝜑 → ((𝐹𝐵) ∈ ℂ ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ ∧ (𝐶𝐸) ∈ ℂ))
2421, 10subcld 11540 . . 3 (𝜑 → (𝐸𝐴) ∈ ℂ)
2511simp2d 1143 . . . 4 (𝜑𝐷 ∈ ℂ)
263, 25subcld 11540 . . 3 (𝜑 → (𝐵𝐷) ∈ ℂ)
2725, 6subcld 11540 . . 3 (𝜑 → (𝐷𝐶) ∈ ℂ)
2824, 26, 273jca 1128 . 2 (𝜑 → ((𝐸𝐴) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ))
29 cevath.f . . . 4 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
3029simp2d 1143 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0)
3129simp1d 1142 . . 3 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0)
3229simp3d 1144 . . 3 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0)
3330, 31, 323jca 1128 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
346, 10, 33jca 1128 . . . 4 (𝜑 → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
3521, 12, 253jca 1128 . . . 4 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ))
36 cevath.d . . . . . 6 (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
3736simp3d 1144 . . . . 5 (𝜑 → ((𝐶𝑂)𝐺(𝐹𝑂)) = 0)
3836simp1d 1142 . . . . 5 (𝜑 → ((𝐴𝑂)𝐺(𝐷𝑂)) = 0)
3936simp2d 1143 . . . . 5 (𝜑 → ((𝐵𝑂)𝐺(𝐸𝑂)) = 0)
4037, 38, 393jca 1128 . . . 4 (𝜑 → (((𝐶𝑂)𝐺(𝐹𝑂)) = 0 ∧ ((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0))
41 cevath.e . . . . . 6 (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
4241simp3d 1144 . . . . 5 (𝜑 → ((𝐶𝐸)𝐺(𝐴𝐸)) = 0)
4341simp1d 1142 . . . . 5 (𝜑 → ((𝐴𝐹)𝐺(𝐵𝐹)) = 0)
4441simp2d 1143 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) = 0)
4542, 43, 443jca 1128 . . . 4 (𝜑 → (((𝐶𝐸)𝐺(𝐴𝐸)) = 0 ∧ ((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0))
4632, 31, 303jca 1128 . . . 4 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0 ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0))
471, 34, 35, 4, 40, 45, 46cevathlem2 46873 . . 3 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐴𝐹)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐹𝐵)))
483, 6, 103jca 1128 . . . 4 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
4925, 21, 123jca 1128 . . . 4 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
5039, 37, 383jca 1128 . . . 4 (𝜑 → (((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0 ∧ ((𝐴𝑂)𝐺(𝐷𝑂)) = 0))
5144, 42, 433jca 1128 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0 ∧ ((𝐴𝐹)𝐺(𝐵𝐹)) = 0))
5230, 32, 313jca 1128 . . . 4 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0 ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0))
531, 48, 49, 4, 50, 51, 52cevathlem2 46873 . . 3 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐸)) = (((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐸𝐴)))
541, 2, 11, 4, 36, 41, 29cevathlem2 46873 . . 3 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
5547, 53, 543jca 1128 . 2 (𝜑 → ((((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐴𝐹)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐹𝐵)) ∧ (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐸)) = (((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐸𝐴)) ∧ (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶))))
5617, 23, 28, 33, 55cevathlem1 46872 1 (𝜑 → (((𝐴𝐹) · (𝐶𝐸)) · (𝐵𝐷)) = (((𝐹𝐵) · (𝐸𝐴)) · (𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  cmpo 7392  cc 11073  0cc0 11075   · cmul 11080  cmin 11412  ccj 15069  cim 15071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-cj 15072  df-re 15073  df-im 15074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator