Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevath Structured version   Visualization version   GIF version

Theorem cevath 44792
Description: Ceva's theorem. Let 𝐴𝐵𝐶 be a triangle and let points 𝐹, 𝐷 and 𝐸 lie on sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐴 correspondingly. Suppose that cevians 𝐴𝐷, 𝐵𝐸 and 𝐶𝐹 intersect at one point 𝑂. Then triangle's sides are partitioned into segments and their lengths satisfy a certain identity. Here we obtain a bit stronger version by using complex numbers themselves instead of their absolute values.

The proof goes by applying cevathlem2 44791 three times and then using cevathlem1 44790 to multiply obtained identities and prove the theorem.

In the theorem statement we are using function 𝐺 as a collinearity indicator. For justification of that use, see sigarcol 44787. This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017.)

Hypotheses
Ref Expression
cevath.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
cevath.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevath.b (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
cevath.c (𝜑𝑂 ∈ ℂ)
cevath.d (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
cevath.e (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
cevath.f (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
Assertion
Ref Expression
cevath (𝜑 → (((𝐴𝐹) · (𝐶𝐸)) · (𝐵𝐷)) = (((𝐹𝐵) · (𝐸𝐴)) · (𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑂,𝑦   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem cevath
StepHypRef Expression
1 cevath.sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
2 cevath.a . . . . . . 7 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
32simp2d 1143 . . . . . 6 (𝜑𝐵 ∈ ℂ)
4 cevath.c . . . . . 6 (𝜑𝑂 ∈ ℂ)
53, 4subcld 11445 . . . . 5 (𝜑 → (𝐵𝑂) ∈ ℂ)
62simp3d 1144 . . . . . 6 (𝜑𝐶 ∈ ℂ)
76, 4subcld 11445 . . . . 5 (𝜑 → (𝐶𝑂) ∈ ℂ)
85, 7jca 513 . . . 4 (𝜑 → ((𝐵𝑂) ∈ ℂ ∧ (𝐶𝑂) ∈ ℂ))
91, 8sigarimcd 44785 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐶𝑂)) ∈ ℂ)
102simp1d 1142 . . . 4 (𝜑𝐴 ∈ ℂ)
11 cevath.b . . . . 5 (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
1211simp1d 1142 . . . 4 (𝜑𝐹 ∈ ℂ)
1310, 12subcld 11445 . . 3 (𝜑 → (𝐴𝐹) ∈ ℂ)
1410, 4subcld 11445 . . . . 5 (𝜑 → (𝐴𝑂) ∈ ℂ)
157, 14jca 513 . . . 4 (𝜑 → ((𝐶𝑂) ∈ ℂ ∧ (𝐴𝑂) ∈ ℂ))
161, 15sigarimcd 44785 . . 3 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) ∈ ℂ)
179, 13, 163jca 1128 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) ∈ ℂ ∧ (𝐴𝐹) ∈ ℂ ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ∈ ℂ))
1812, 3subcld 11445 . . 3 (𝜑 → (𝐹𝐵) ∈ ℂ)
1914, 5jca 513 . . . 4 (𝜑 → ((𝐴𝑂) ∈ ℂ ∧ (𝐵𝑂) ∈ ℂ))
201, 19sigarimcd 44785 . . 3 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ)
2111simp3d 1144 . . . 4 (𝜑𝐸 ∈ ℂ)
226, 21subcld 11445 . . 3 (𝜑 → (𝐶𝐸) ∈ ℂ)
2318, 20, 223jca 1128 . 2 (𝜑 → ((𝐹𝐵) ∈ ℂ ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ∈ ℂ ∧ (𝐶𝐸) ∈ ℂ))
2421, 10subcld 11445 . . 3 (𝜑 → (𝐸𝐴) ∈ ℂ)
2511simp2d 1143 . . . 4 (𝜑𝐷 ∈ ℂ)
263, 25subcld 11445 . . 3 (𝜑 → (𝐵𝐷) ∈ ℂ)
2725, 6subcld 11445 . . 3 (𝜑 → (𝐷𝐶) ∈ ℂ)
2824, 26, 273jca 1128 . 2 (𝜑 → ((𝐸𝐴) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ))
29 cevath.f . . . 4 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
3029simp2d 1143 . . 3 (𝜑 → ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0)
3129simp1d 1142 . . 3 (𝜑 → ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0)
3229simp3d 1144 . . 3 (𝜑 → ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0)
3330, 31, 323jca 1128 . 2 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0))
346, 10, 33jca 1128 . . . 4 (𝜑 → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
3521, 12, 253jca 1128 . . . 4 (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ))
36 cevath.d . . . . . 6 (𝜑 → (((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0))
3736simp3d 1144 . . . . 5 (𝜑 → ((𝐶𝑂)𝐺(𝐹𝑂)) = 0)
3836simp1d 1142 . . . . 5 (𝜑 → ((𝐴𝑂)𝐺(𝐷𝑂)) = 0)
3936simp2d 1143 . . . . 5 (𝜑 → ((𝐵𝑂)𝐺(𝐸𝑂)) = 0)
4037, 38, 393jca 1128 . . . 4 (𝜑 → (((𝐶𝑂)𝐺(𝐹𝑂)) = 0 ∧ ((𝐴𝑂)𝐺(𝐷𝑂)) = 0 ∧ ((𝐵𝑂)𝐺(𝐸𝑂)) = 0))
41 cevath.e . . . . . 6 (𝜑 → (((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0))
4241simp3d 1144 . . . . 5 (𝜑 → ((𝐶𝐸)𝐺(𝐴𝐸)) = 0)
4341simp1d 1142 . . . . 5 (𝜑 → ((𝐴𝐹)𝐺(𝐵𝐹)) = 0)
4441simp2d 1143 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) = 0)
4542, 43, 443jca 1128 . . . 4 (𝜑 → (((𝐶𝐸)𝐺(𝐴𝐸)) = 0 ∧ ((𝐴𝐹)𝐺(𝐵𝐹)) = 0 ∧ ((𝐵𝐷)𝐺(𝐶𝐷)) = 0))
4632, 31, 303jca 1128 . . . 4 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0 ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0 ∧ ((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0))
471, 34, 35, 4, 40, 45, 46cevathlem2 44791 . . 3 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐴𝐹)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐹𝐵)))
483, 6, 103jca 1128 . . . 4 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
4925, 21, 123jca 1128 . . . 4 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
5039, 37, 383jca 1128 . . . 4 (𝜑 → (((𝐵𝑂)𝐺(𝐸𝑂)) = 0 ∧ ((𝐶𝑂)𝐺(𝐹𝑂)) = 0 ∧ ((𝐴𝑂)𝐺(𝐷𝑂)) = 0))
5144, 42, 433jca 1128 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) = 0 ∧ ((𝐶𝐸)𝐺(𝐴𝐸)) = 0 ∧ ((𝐴𝐹)𝐺(𝐵𝐹)) = 0))
5230, 32, 313jca 1128 . . . 4 (𝜑 → (((𝐵𝑂)𝐺(𝐶𝑂)) ≠ 0 ∧ ((𝐶𝑂)𝐺(𝐴𝑂)) ≠ 0 ∧ ((𝐴𝑂)𝐺(𝐵𝑂)) ≠ 0))
531, 48, 49, 4, 50, 51, 52cevathlem2 44791 . . 3 (𝜑 → (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐸)) = (((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐸𝐴)))
541, 2, 11, 4, 36, 41, 29cevathlem2 44791 . . 3 (𝜑 → (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶)))
5547, 53, 543jca 1128 . 2 (𝜑 → ((((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐴𝐹)) = (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐹𝐵)) ∧ (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐶𝐸)) = (((𝐵𝑂)𝐺(𝐶𝑂)) · (𝐸𝐴)) ∧ (((𝐶𝑂)𝐺(𝐴𝑂)) · (𝐵𝐷)) = (((𝐴𝑂)𝐺(𝐵𝑂)) · (𝐷𝐶))))
5617, 23, 28, 33, 55cevathlem1 44790 1 (𝜑 → (((𝐴𝐹) · (𝐶𝐸)) · (𝐵𝐷)) = (((𝐹𝐵) · (𝐸𝐴)) · (𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wne 2941  cfv 6491  (class class class)co 7349  cmpo 7351  cc 10982  0cc0 10984   · cmul 10989  cmin 11318  ccj 14914  cim 14916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5528  df-po 5542  df-so 5543  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8581  df-en 8817  df-dom 8818  df-sdom 8819  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-2 12149  df-cj 14917  df-re 14918  df-im 14919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator