Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaradd Structured version   Visualization version   GIF version

Theorem sigaradd 46864
Description: Subtracting (double) area of 𝐴𝐷𝐶 from 𝐴𝐵𝐶 yields the (double) area of 𝐷𝐵𝐶. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sharhght.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sharhght.b (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
Assertion
Ref Expression
sigaradd (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigaradd
StepHypRef Expression
1 sharhght.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp1d 1142 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
31simp3d 1144 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 sharhght.b . . . . . . . 8 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
54simpld 494 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
62, 3, 5nnncan1d 11567 . . . . . 6 (𝜑 → ((𝐴𝐶) − (𝐴𝐷)) = (𝐷𝐶))
76oveq2d 7403 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
81simp2d 1143 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
98, 5subcld 11533 . . . . . 6 (𝜑 → (𝐵𝐷) ∈ ℂ)
102, 3subcld 11533 . . . . . 6 (𝜑 → (𝐴𝐶) ∈ ℂ)
112, 5subcld 11533 . . . . . 6 (𝜑 → (𝐴𝐷) ∈ ℂ)
12 sharhght.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1312sigarms 46854 . . . . . 6 (((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ) → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
149, 10, 11, 13syl3anc 1373 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
157, 14eqtr3d 2766 . . . 4 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
1612sigarac 46850 . . . . . . . . 9 (((𝐴𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
1711, 9, 16syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
184simprd 495 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
1917, 18eqtr3d 2766 . . . . . . 7 (𝜑 → -((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2019negeqd 11415 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = -0)
219, 11jca 511 . . . . . . . 8 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ))
2212, 21sigarimcd 46860 . . . . . . 7 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) ∈ ℂ)
2322negnegd 11524 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = ((𝐵𝐷)𝐺(𝐴𝐷)))
24 neg0 11468 . . . . . . 7 -0 = 0
2524a1i 11 . . . . . 6 (𝜑 → -0 = 0)
2620, 23, 253eqtr3d 2772 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2726oveq2d 7403 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − 0))
289, 10jca 511 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ))
2912, 28sigarimcd 46860 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐶)) ∈ ℂ)
3029subid1d 11522 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − 0) = ((𝐵𝐷)𝐺(𝐴𝐶)))
3115, 27, 303eqtrd 2768 . . 3 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
328, 5, 3nnncan2d 11568 . . . 4 (𝜑 → ((𝐵𝐶) − (𝐷𝐶)) = (𝐵𝐷))
3332oveq1d 7402 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
348, 3subcld 11533 . . . 4 (𝜑 → (𝐵𝐶) ∈ ℂ)
355, 3subcld 11533 . . . 4 (𝜑 → (𝐷𝐶) ∈ ℂ)
3612sigarmf 46852 . . . 4 (((𝐵𝐶) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ) → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3734, 10, 35, 36syl3anc 1373 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3831, 33, 373eqtr2rd 2771 . 2 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
393, 5subcld 11533 . . . 4 (𝜑 → (𝐶𝐷) ∈ ℂ)
40 1red 11175 . . . . 5 (𝜑 → 1 ∈ ℝ)
4140renegcld 11605 . . . 4 (𝜑 → -1 ∈ ℝ)
4212sigarls 46855 . . . 4 (((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ -1 ∈ ℝ) → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
439, 39, 41, 42syl3anc 1373 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
4439mulm1d 11630 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = -(𝐶𝐷))
45 1cnd 11169 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4645negcld 11520 . . . . . 6 (𝜑 → -1 ∈ ℂ)
4746, 39mulcomd 11195 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = ((𝐶𝐷) · -1))
483, 5negsubdi2d 11549 . . . . 5 (𝜑 → -(𝐶𝐷) = (𝐷𝐶))
4944, 47, 483eqtr3d 2772 . . . 4 (𝜑 → ((𝐶𝐷) · -1) = (𝐷𝐶))
5049oveq2d 7403 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = ((𝐵𝐷)𝐺(𝐷𝐶)))
519, 39jca 511 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
5212, 51sigarimcd 46860 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) ∈ ℂ)
5352mulm1d 11630 . . . 4 (𝜑 → (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5452, 46mulcomd 11195 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))))
5512sigarac 46850 . . . . 5 (((𝐶𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5639, 9, 55syl2anc 584 . . . 4 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5753, 54, 563eqtr4d 2774 . . 3 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5843, 50, 573eqtr3d 2772 . 2 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5912sigarperm 46858 . . 3 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
603, 8, 5, 59syl3anc 1373 . 2 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
6138, 58, 603eqtrd 2768 1 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  cmpo 7389  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  cmin 11405  -cneg 11406  ccj 15062  cim 15064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-cj 15065  df-re 15066  df-im 15067
This theorem is referenced by:  cevathlem2  46866
  Copyright terms: Public domain W3C validator