Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaradd Structured version   Visualization version   GIF version

Theorem sigaradd 46822
Description: Subtracting (double) area of 𝐴𝐷𝐶 from 𝐴𝐵𝐶 yields the (double) area of 𝐷𝐵𝐶. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sharhght.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sharhght.b (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
Assertion
Ref Expression
sigaradd (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigaradd
StepHypRef Expression
1 sharhght.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp1d 1141 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
31simp3d 1143 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 sharhght.b . . . . . . . 8 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
54simpld 494 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
62, 3, 5nnncan1d 11652 . . . . . 6 (𝜑 → ((𝐴𝐶) − (𝐴𝐷)) = (𝐷𝐶))
76oveq2d 7447 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
81simp2d 1142 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
98, 5subcld 11618 . . . . . 6 (𝜑 → (𝐵𝐷) ∈ ℂ)
102, 3subcld 11618 . . . . . 6 (𝜑 → (𝐴𝐶) ∈ ℂ)
112, 5subcld 11618 . . . . . 6 (𝜑 → (𝐴𝐷) ∈ ℂ)
12 sharhght.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1312sigarms 46812 . . . . . 6 (((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ) → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
149, 10, 11, 13syl3anc 1370 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
157, 14eqtr3d 2777 . . . 4 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
1612sigarac 46808 . . . . . . . . 9 (((𝐴𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
1711, 9, 16syl2anc 584 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
184simprd 495 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
1917, 18eqtr3d 2777 . . . . . . 7 (𝜑 → -((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2019negeqd 11500 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = -0)
219, 11jca 511 . . . . . . . 8 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ))
2212, 21sigarimcd 46818 . . . . . . 7 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) ∈ ℂ)
2322negnegd 11609 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = ((𝐵𝐷)𝐺(𝐴𝐷)))
24 neg0 11553 . . . . . . 7 -0 = 0
2524a1i 11 . . . . . 6 (𝜑 → -0 = 0)
2620, 23, 253eqtr3d 2783 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2726oveq2d 7447 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − 0))
289, 10jca 511 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ))
2912, 28sigarimcd 46818 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐶)) ∈ ℂ)
3029subid1d 11607 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − 0) = ((𝐵𝐷)𝐺(𝐴𝐶)))
3115, 27, 303eqtrd 2779 . . 3 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
328, 5, 3nnncan2d 11653 . . . 4 (𝜑 → ((𝐵𝐶) − (𝐷𝐶)) = (𝐵𝐷))
3332oveq1d 7446 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
348, 3subcld 11618 . . . 4 (𝜑 → (𝐵𝐶) ∈ ℂ)
355, 3subcld 11618 . . . 4 (𝜑 → (𝐷𝐶) ∈ ℂ)
3612sigarmf 46810 . . . 4 (((𝐵𝐶) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ) → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3734, 10, 35, 36syl3anc 1370 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3831, 33, 373eqtr2rd 2782 . 2 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
393, 5subcld 11618 . . . 4 (𝜑 → (𝐶𝐷) ∈ ℂ)
40 1red 11260 . . . . 5 (𝜑 → 1 ∈ ℝ)
4140renegcld 11688 . . . 4 (𝜑 → -1 ∈ ℝ)
4212sigarls 46813 . . . 4 (((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ -1 ∈ ℝ) → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
439, 39, 41, 42syl3anc 1370 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
4439mulm1d 11713 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = -(𝐶𝐷))
45 1cnd 11254 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4645negcld 11605 . . . . . 6 (𝜑 → -1 ∈ ℂ)
4746, 39mulcomd 11280 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = ((𝐶𝐷) · -1))
483, 5negsubdi2d 11634 . . . . 5 (𝜑 → -(𝐶𝐷) = (𝐷𝐶))
4944, 47, 483eqtr3d 2783 . . . 4 (𝜑 → ((𝐶𝐷) · -1) = (𝐷𝐶))
5049oveq2d 7447 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = ((𝐵𝐷)𝐺(𝐷𝐶)))
519, 39jca 511 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
5212, 51sigarimcd 46818 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) ∈ ℂ)
5352mulm1d 11713 . . . 4 (𝜑 → (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5452, 46mulcomd 11280 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))))
5512sigarac 46808 . . . . 5 (((𝐶𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5639, 9, 55syl2anc 584 . . . 4 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5753, 54, 563eqtr4d 2785 . . 3 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5843, 50, 573eqtr3d 2783 . 2 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5912sigarperm 46816 . . 3 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
603, 8, 5, 59syl3anc 1370 . 2 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
6138, 58, 603eqtrd 2779 1 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cmpo 7433  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158  cmin 11490  -cneg 11491  ccj 15132  cim 15134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-cj 15135  df-re 15136  df-im 15137
This theorem is referenced by:  cevathlem2  46824
  Copyright terms: Public domain W3C validator