![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcoptcl | Structured version Visualization version GIF version |
Description: A constant function is a path from 𝑌 to itself. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
pcopt.1 | ⊢ 𝑃 = ((0[,]1) × {𝑌}) |
Ref | Expression |
---|---|
pcoptcl | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcopt.1 | . . 3 ⊢ 𝑃 = ((0[,]1) × {𝑌}) | |
2 | iitopon 24924 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
3 | cnconst2 23312 | . . . 4 ⊢ ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽)) | |
4 | 2, 3 | mp3an1 1448 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽)) |
5 | 1, 4 | eqeltrid 2848 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝑃 ∈ (II Cn 𝐽)) |
6 | 1 | fveq1i 6921 | . . 3 ⊢ (𝑃‘0) = (((0[,]1) × {𝑌})‘0) |
7 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) | |
8 | 0elunit 13529 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
9 | fvconst2g 7239 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘0) = 𝑌) | |
10 | 7, 8, 9 | sylancl 585 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (((0[,]1) × {𝑌})‘0) = 𝑌) |
11 | 6, 10 | eqtrid 2792 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃‘0) = 𝑌) |
12 | 1 | fveq1i 6921 | . . 3 ⊢ (𝑃‘1) = (((0[,]1) × {𝑌})‘1) |
13 | 1elunit 13530 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
14 | fvconst2g 7239 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘1) = 𝑌) | |
15 | 7, 13, 14 | sylancl 585 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (((0[,]1) × {𝑌})‘1) = 𝑌) |
16 | 12, 15 | eqtrid 2792 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃‘1) = 𝑌) |
17 | 5, 11, 16 | 3jca 1128 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {csn 4648 × cxp 5698 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 [,]cicc 13410 TopOnctopon 22937 Cn ccn 23253 IIcii 24920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-cn 23256 df-cnp 23257 df-ii 24922 |
This theorem is referenced by: pcopt 25074 pcopt2 25075 pcorevlem 25078 pi1grplem 25101 sconnpi1 35207 cvxsconn 35211 |
Copyright terms: Public domain | W3C validator |