Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcoptcl | Structured version Visualization version GIF version |
Description: A constant function is a path from 𝑌 to itself. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
pcopt.1 | ⊢ 𝑃 = ((0[,]1) × {𝑌}) |
Ref | Expression |
---|---|
pcoptcl | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcopt.1 | . . 3 ⊢ 𝑃 = ((0[,]1) × {𝑌}) | |
2 | iitopon 23585 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
3 | cnconst2 21988 | . . . 4 ⊢ ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽)) | |
4 | 2, 3 | mp3an1 1445 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽)) |
5 | 1, 4 | eqeltrid 2856 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝑃 ∈ (II Cn 𝐽)) |
6 | 1 | fveq1i 6663 | . . 3 ⊢ (𝑃‘0) = (((0[,]1) × {𝑌})‘0) |
7 | simpr 488 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) | |
8 | 0elunit 12906 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
9 | fvconst2g 6960 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘0) = 𝑌) | |
10 | 7, 8, 9 | sylancl 589 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (((0[,]1) × {𝑌})‘0) = 𝑌) |
11 | 6, 10 | syl5eq 2805 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃‘0) = 𝑌) |
12 | 1 | fveq1i 6663 | . . 3 ⊢ (𝑃‘1) = (((0[,]1) × {𝑌})‘1) |
13 | 1elunit 12907 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
14 | fvconst2g 6960 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘1) = 𝑌) | |
15 | 7, 13, 14 | sylancl 589 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (((0[,]1) × {𝑌})‘1) = 𝑌) |
16 | 12, 15 | syl5eq 2805 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃‘1) = 𝑌) |
17 | 5, 11, 16 | 3jca 1125 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 {csn 4525 × cxp 5525 ‘cfv 6339 (class class class)co 7155 0cc0 10580 1c1 10581 [,]cicc 12787 TopOnctopon 21615 Cn ccn 21929 IIcii 23581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-n0 11940 df-z 12026 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-icc 12791 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-topgen 16780 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-top 21599 df-topon 21616 df-bases 21651 df-cn 21932 df-cnp 21933 df-ii 23583 |
This theorem is referenced by: pcopt 23728 pcopt2 23729 pcorevlem 23732 pi1grplem 23755 sconnpi1 32721 cvxsconn 32725 |
Copyright terms: Public domain | W3C validator |