| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pcoptcl | Structured version Visualization version GIF version | ||
| Description: A constant function is a path from 𝑌 to itself. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| pcopt.1 | ⊢ 𝑃 = ((0[,]1) × {𝑌}) |
| Ref | Expression |
|---|---|
| pcoptcl | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcopt.1 | . . 3 ⊢ 𝑃 = ((0[,]1) × {𝑌}) | |
| 2 | iitopon 24821 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 3 | cnconst2 23219 | . . . 4 ⊢ ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽)) | |
| 4 | 2, 3 | mp3an1 1450 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → ((0[,]1) × {𝑌}) ∈ (II Cn 𝐽)) |
| 5 | 1, 4 | eqeltrid 2838 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝑃 ∈ (II Cn 𝐽)) |
| 6 | 1 | fveq1i 6876 | . . 3 ⊢ (𝑃‘0) = (((0[,]1) × {𝑌})‘0) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝑌 ∈ 𝑋) | |
| 8 | 0elunit 13484 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 9 | fvconst2g 7193 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘0) = 𝑌) | |
| 10 | 7, 8, 9 | sylancl 586 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (((0[,]1) × {𝑌})‘0) = 𝑌) |
| 11 | 6, 10 | eqtrid 2782 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃‘0) = 𝑌) |
| 12 | 1 | fveq1i 6876 | . . 3 ⊢ (𝑃‘1) = (((0[,]1) × {𝑌})‘1) |
| 13 | 1elunit 13485 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
| 14 | fvconst2g 7193 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (((0[,]1) × {𝑌})‘1) = 𝑌) | |
| 15 | 7, 13, 14 | sylancl 586 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (((0[,]1) × {𝑌})‘1) = 𝑌) |
| 16 | 12, 15 | eqtrid 2782 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃‘1) = 𝑌) |
| 17 | 5, 11, 16 | 3jca 1128 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 [,]cicc 13363 TopOnctopon 22846 Cn ccn 23160 IIcii 24817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-icc 13367 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-topgen 17455 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-top 22830 df-topon 22847 df-bases 22882 df-cn 23163 df-cnp 23164 df-ii 24819 |
| This theorem is referenced by: pcopt 24971 pcopt2 24972 pcorevlem 24975 pi1grplem 24998 sconnpi1 35207 cvxsconn 35211 |
| Copyright terms: Public domain | W3C validator |