| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrrtlc2 | Structured version Visualization version GIF version | ||
| Description: In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| Ref | Expression |
|---|---|
| constrrtlc.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| constrrtlc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| constrrtlc.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| constrrtlc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| constrrtlc.e | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| constrrtlc.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| constrrtlc.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| constrrtlc.1 | ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) |
| constrrtlc.2 | ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) = (abs‘(𝐸 − 𝐹))) |
| constrrtlc2.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| constrrtlc2 | ⊢ (𝜑 → 𝑋 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrrtlc.1 | . 2 ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) | |
| 2 | constrrtlc.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 3 | constrrtlc.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | 2, 3 | sseldd 3949 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 5 | constrrtlc2.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 6 | 5 | eqcomd 2736 | . . . . . 6 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 7 | 4, 6 | subeq0bd 11610 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) = 0) |
| 8 | 7 | oveq2d 7405 | . . . 4 ⊢ (𝜑 → (𝑇 · (𝐵 − 𝐴)) = (𝑇 · 0)) |
| 9 | constrrtlc.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
| 10 | 9 | recnd 11208 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 11 | 10 | mul01d 11379 | . . . 4 ⊢ (𝜑 → (𝑇 · 0) = 0) |
| 12 | 8, 11 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (𝑇 · (𝐵 − 𝐴)) = 0) |
| 13 | 12 | oveq2d 7405 | . 2 ⊢ (𝜑 → (𝐴 + (𝑇 · (𝐵 − 𝐴))) = (𝐴 + 0)) |
| 14 | constrrtlc.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 15 | 2, 14 | sseldd 3949 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 16 | 15 | addridd 11380 | . 2 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| 17 | 1, 13, 16 | 3eqtrd 2769 | 1 ⊢ (𝜑 → 𝑋 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 ℝcr 11073 0cc0 11074 + caddc 11077 · cmul 11079 − cmin 11411 abscabs 15206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-sub 11413 |
| This theorem is referenced by: constrfin 33742 constrelextdg2 33743 |
| Copyright terms: Public domain | W3C validator |