![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > constrrtlc2 | Structured version Visualization version GIF version |
Description: In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
Ref | Expression |
---|---|
constrrtlc.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
constrrtlc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
constrrtlc.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
constrrtlc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
constrrtlc.e | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
constrrtlc.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
constrrtlc.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
constrrtlc.1 | ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) |
constrrtlc.2 | ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) = (abs‘(𝐸 − 𝐹))) |
constrrtlc2.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
constrrtlc2 | ⊢ (𝜑 → 𝑋 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | constrrtlc.1 | . 2 ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) | |
2 | constrrtlc.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
3 | constrrtlc.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | 2, 3 | sseldd 3996 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | constrrtlc2.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
6 | 5 | eqcomd 2741 | . . . . . 6 ⊢ (𝜑 → 𝐵 = 𝐴) |
7 | 4, 6 | subeq0bd 11687 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) = 0) |
8 | 7 | oveq2d 7447 | . . . 4 ⊢ (𝜑 → (𝑇 · (𝐵 − 𝐴)) = (𝑇 · 0)) |
9 | constrrtlc.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
10 | 9 | recnd 11287 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
11 | 10 | mul01d 11458 | . . . 4 ⊢ (𝜑 → (𝑇 · 0) = 0) |
12 | 8, 11 | eqtrd 2775 | . . 3 ⊢ (𝜑 → (𝑇 · (𝐵 − 𝐴)) = 0) |
13 | 12 | oveq2d 7447 | . 2 ⊢ (𝜑 → (𝐴 + (𝑇 · (𝐵 − 𝐴))) = (𝐴 + 0)) |
14 | constrrtlc.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
15 | 2, 14 | sseldd 3996 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 15 | addridd 11459 | . 2 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
17 | 1, 13, 16 | 3eqtrd 2779 | 1 ⊢ (𝜑 → 𝑋 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 + caddc 11156 · cmul 11158 − cmin 11490 abscabs 15270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 |
This theorem is referenced by: constrfin 33751 constrelextdg2 33752 |
Copyright terms: Public domain | W3C validator |