| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrrtlc2 | Structured version Visualization version GIF version | ||
| Description: In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| Ref | Expression |
|---|---|
| constrrtlc.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| constrrtlc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| constrrtlc.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| constrrtlc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| constrrtlc.e | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| constrrtlc.f | ⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| constrrtlc.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| constrrtlc.1 | ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) |
| constrrtlc.2 | ⊢ (𝜑 → (abs‘(𝑋 − 𝐶)) = (abs‘(𝐸 − 𝐹))) |
| constrrtlc2.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| constrrtlc2 | ⊢ (𝜑 → 𝑋 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrrtlc.1 | . 2 ⊢ (𝜑 → 𝑋 = (𝐴 + (𝑇 · (𝐵 − 𝐴)))) | |
| 2 | constrrtlc.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 3 | constrrtlc.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | 2, 3 | sseldd 3966 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 5 | constrrtlc2.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 6 | 5 | eqcomd 2740 | . . . . . 6 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 7 | 4, 6 | subeq0bd 11672 | . . . . 5 ⊢ (𝜑 → (𝐵 − 𝐴) = 0) |
| 8 | 7 | oveq2d 7430 | . . . 4 ⊢ (𝜑 → (𝑇 · (𝐵 − 𝐴)) = (𝑇 · 0)) |
| 9 | constrrtlc.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
| 10 | 9 | recnd 11272 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 11 | 10 | mul01d 11443 | . . . 4 ⊢ (𝜑 → (𝑇 · 0) = 0) |
| 12 | 8, 11 | eqtrd 2769 | . . 3 ⊢ (𝜑 → (𝑇 · (𝐵 − 𝐴)) = 0) |
| 13 | 12 | oveq2d 7430 | . 2 ⊢ (𝜑 → (𝐴 + (𝑇 · (𝐵 − 𝐴))) = (𝐴 + 0)) |
| 14 | constrrtlc.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 15 | 2, 14 | sseldd 3966 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 16 | 15 | addridd 11444 | . 2 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| 17 | 1, 13, 16 | 3eqtrd 2773 | 1 ⊢ (𝜑 → 𝑋 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 ‘cfv 6542 (class class class)co 7414 ℂcc 11136 ℝcr 11137 0cc0 11138 + caddc 11141 · cmul 11143 − cmin 11475 abscabs 15256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-sub 11477 |
| This theorem is referenced by: constrfin 33728 constrelextdg2 33729 |
| Copyright terms: Public domain | W3C validator |