Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrrtlc2 Structured version   Visualization version   GIF version

Theorem constrrtlc2 33739
Description: In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.)
Hypotheses
Ref Expression
constrrtlc.s (𝜑𝑆 ⊆ ℂ)
constrrtlc.a (𝜑𝐴𝑆)
constrrtlc.b (𝜑𝐵𝑆)
constrrtlc.c (𝜑𝐶𝑆)
constrrtlc.e (𝜑𝐸𝑆)
constrrtlc.f (𝜑𝐹𝑆)
constrrtlc.t (𝜑𝑇 ∈ ℝ)
constrrtlc.1 (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))
constrrtlc.2 (𝜑 → (abs‘(𝑋𝐶)) = (abs‘(𝐸𝐹)))
constrrtlc2.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
constrrtlc2 (𝜑𝑋 = 𝐴)

Proof of Theorem constrrtlc2
StepHypRef Expression
1 constrrtlc.1 . 2 (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))
2 constrrtlc.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3 constrrtlc.b . . . . . . 7 (𝜑𝐵𝑆)
42, 3sseldd 3996 . . . . . 6 (𝜑𝐵 ∈ ℂ)
5 constrrtlc2.1 . . . . . . 7 (𝜑𝐴 = 𝐵)
65eqcomd 2741 . . . . . 6 (𝜑𝐵 = 𝐴)
74, 6subeq0bd 11687 . . . . 5 (𝜑 → (𝐵𝐴) = 0)
87oveq2d 7447 . . . 4 (𝜑 → (𝑇 · (𝐵𝐴)) = (𝑇 · 0))
9 constrrtlc.t . . . . . 6 (𝜑𝑇 ∈ ℝ)
109recnd 11287 . . . . 5 (𝜑𝑇 ∈ ℂ)
1110mul01d 11458 . . . 4 (𝜑 → (𝑇 · 0) = 0)
128, 11eqtrd 2775 . . 3 (𝜑 → (𝑇 · (𝐵𝐴)) = 0)
1312oveq2d 7447 . 2 (𝜑 → (𝐴 + (𝑇 · (𝐵𝐴))) = (𝐴 + 0))
14 constrrtlc.a . . . 4 (𝜑𝐴𝑆)
152, 14sseldd 3996 . . 3 (𝜑𝐴 ∈ ℂ)
1615addridd 11459 . 2 (𝜑 → (𝐴 + 0) = 𝐴)
171, 13, 163eqtrd 2779 1 (𝜑𝑋 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   + caddc 11156   · cmul 11158  cmin 11490  abscabs 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492
This theorem is referenced by:  constrfin  33751  constrelextdg2  33752
  Copyright terms: Public domain W3C validator