Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrrtlc2 Structured version   Visualization version   GIF version

Theorem constrrtlc2 33716
Description: In the construction of constructible numbers, line-circle intersections are one of the original points, in a degenerate case. (Contributed by Thierry Arnoux, 6-Jul-2025.)
Hypotheses
Ref Expression
constrrtlc.s (𝜑𝑆 ⊆ ℂ)
constrrtlc.a (𝜑𝐴𝑆)
constrrtlc.b (𝜑𝐵𝑆)
constrrtlc.c (𝜑𝐶𝑆)
constrrtlc.e (𝜑𝐸𝑆)
constrrtlc.f (𝜑𝐹𝑆)
constrrtlc.t (𝜑𝑇 ∈ ℝ)
constrrtlc.1 (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))
constrrtlc.2 (𝜑 → (abs‘(𝑋𝐶)) = (abs‘(𝐸𝐹)))
constrrtlc2.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
constrrtlc2 (𝜑𝑋 = 𝐴)

Proof of Theorem constrrtlc2
StepHypRef Expression
1 constrrtlc.1 . 2 (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))
2 constrrtlc.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3 constrrtlc.b . . . . . . 7 (𝜑𝐵𝑆)
42, 3sseldd 3944 . . . . . 6 (𝜑𝐵 ∈ ℂ)
5 constrrtlc2.1 . . . . . . 7 (𝜑𝐴 = 𝐵)
65eqcomd 2735 . . . . . 6 (𝜑𝐵 = 𝐴)
74, 6subeq0bd 11580 . . . . 5 (𝜑 → (𝐵𝐴) = 0)
87oveq2d 7385 . . . 4 (𝜑 → (𝑇 · (𝐵𝐴)) = (𝑇 · 0))
9 constrrtlc.t . . . . . 6 (𝜑𝑇 ∈ ℝ)
109recnd 11178 . . . . 5 (𝜑𝑇 ∈ ℂ)
1110mul01d 11349 . . . 4 (𝜑 → (𝑇 · 0) = 0)
128, 11eqtrd 2764 . . 3 (𝜑 → (𝑇 · (𝐵𝐴)) = 0)
1312oveq2d 7385 . 2 (𝜑 → (𝐴 + (𝑇 · (𝐵𝐴))) = (𝐴 + 0))
14 constrrtlc.a . . . 4 (𝜑𝐴𝑆)
152, 14sseldd 3944 . . 3 (𝜑𝐴 ∈ ℂ)
1615addridd 11350 . 2 (𝜑 → (𝐴 + 0) = 𝐴)
171, 13, 163eqtrd 2768 1 (𝜑𝑋 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   + caddc 11047   · cmul 11049  cmin 11381  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383
This theorem is referenced by:  constrfin  33729  constrelextdg2  33730
  Copyright terms: Public domain W3C validator