Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diainN Structured version   Visualization version   GIF version

Theorem diainN 41059
Description: Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diam.m = (meet‘𝐾)
diam.h 𝐻 = (LHyp‘𝐾)
diam.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diainN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝑋𝑌) = (𝐼‘((𝐼𝑋) (𝐼𝑌))))

Proof of Theorem diainN
StepHypRef Expression
1 simpl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 diam.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 diam.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
42, 3diacnvclN 41053 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ dom 𝐼)
54adantrr 717 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼𝑋) ∈ dom 𝐼)
62, 3diacnvclN 41053 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ ran 𝐼) → (𝐼𝑌) ∈ dom 𝐼)
76adantrl 716 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼𝑌) ∈ dom 𝐼)
8 diam.m . . . 4 = (meet‘𝐾)
98, 2, 3diameetN 41058 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑋) ∈ dom 𝐼 ∧ (𝐼𝑌) ∈ dom 𝐼)) → (𝐼‘((𝐼𝑋) (𝐼𝑌))) = ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))))
101, 5, 7, 9syl12anc 837 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘((𝐼𝑋) (𝐼𝑌))) = ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))))
112, 3diaf11N 41051 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
1211adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
13 simprl 771 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝑋 ∈ ran 𝐼)
14 f1ocnvfv2 7297 . . . 4 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑋 ∈ ran 𝐼) → (𝐼‘(𝐼𝑋)) = 𝑋)
1512, 13, 14syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘(𝐼𝑋)) = 𝑋)
16 simprr 773 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝑌 ∈ ran 𝐼)
17 f1ocnvfv2 7297 . . . 4 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑌 ∈ ran 𝐼) → (𝐼‘(𝐼𝑌)) = 𝑌)
1812, 16, 17syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘(𝐼𝑌)) = 𝑌)
1915, 18ineq12d 4221 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))) = (𝑋𝑌))
2010, 19eqtr2d 2778 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝑋𝑌) = (𝐼‘((𝐼𝑋) (𝐼𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3950  ccnv 5684  dom cdm 5685  ran crn 5686  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  meetcmee 18358  HLchlt 39351  LHypclh 39986  DIsoAcdia 41030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-undef 8298  df-map 8868  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-disoa 41031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator