Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diainN Structured version   Visualization version   GIF version

Theorem diainN 38998
Description: Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diam.m = (meet‘𝐾)
diam.h 𝐻 = (LHyp‘𝐾)
diam.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diainN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝑋𝑌) = (𝐼‘((𝐼𝑋) (𝐼𝑌))))

Proof of Theorem diainN
StepHypRef Expression
1 simpl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 diam.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 diam.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
42, 3diacnvclN 38992 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ dom 𝐼)
54adantrr 713 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼𝑋) ∈ dom 𝐼)
62, 3diacnvclN 38992 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ ran 𝐼) → (𝐼𝑌) ∈ dom 𝐼)
76adantrl 712 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼𝑌) ∈ dom 𝐼)
8 diam.m . . . 4 = (meet‘𝐾)
98, 2, 3diameetN 38997 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑋) ∈ dom 𝐼 ∧ (𝐼𝑌) ∈ dom 𝐼)) → (𝐼‘((𝐼𝑋) (𝐼𝑌))) = ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))))
101, 5, 7, 9syl12anc 833 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘((𝐼𝑋) (𝐼𝑌))) = ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))))
112, 3diaf11N 38990 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
1211adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
13 simprl 767 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝑋 ∈ ran 𝐼)
14 f1ocnvfv2 7130 . . . 4 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑋 ∈ ran 𝐼) → (𝐼‘(𝐼𝑋)) = 𝑋)
1512, 13, 14syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘(𝐼𝑋)) = 𝑋)
16 simprr 769 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝑌 ∈ ran 𝐼)
17 f1ocnvfv2 7130 . . . 4 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑌 ∈ ran 𝐼) → (𝐼‘(𝐼𝑌)) = 𝑌)
1812, 16, 17syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘(𝐼𝑌)) = 𝑌)
1915, 18ineq12d 4144 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))) = (𝑋𝑌))
2010, 19eqtr2d 2779 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝑋𝑌) = (𝐼‘((𝐼𝑋) (𝐼𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3882  ccnv 5579  dom cdm 5580  ran crn 5581  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  meetcmee 17945  HLchlt 37291  LHypclh 37925  DIsoAcdia 38969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-disoa 38970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator