Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diainN Structured version   Visualization version   GIF version

Theorem diainN 41051
Description: Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diam.m = (meet‘𝐾)
diam.h 𝐻 = (LHyp‘𝐾)
diam.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
diainN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝑋𝑌) = (𝐼‘((𝐼𝑋) (𝐼𝑌))))

Proof of Theorem diainN
StepHypRef Expression
1 simpl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 diam.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 diam.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
42, 3diacnvclN 41045 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼𝑋) ∈ dom 𝐼)
54adantrr 717 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼𝑋) ∈ dom 𝐼)
62, 3diacnvclN 41045 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ ran 𝐼) → (𝐼𝑌) ∈ dom 𝐼)
76adantrl 716 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼𝑌) ∈ dom 𝐼)
8 diam.m . . . 4 = (meet‘𝐾)
98, 2, 3diameetN 41050 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐼𝑋) ∈ dom 𝐼 ∧ (𝐼𝑌) ∈ dom 𝐼)) → (𝐼‘((𝐼𝑋) (𝐼𝑌))) = ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))))
101, 5, 7, 9syl12anc 836 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘((𝐼𝑋) (𝐼𝑌))) = ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))))
112, 3diaf11N 41043 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
1211adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
13 simprl 770 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝑋 ∈ ran 𝐼)
14 f1ocnvfv2 7252 . . . 4 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑋 ∈ ran 𝐼) → (𝐼‘(𝐼𝑋)) = 𝑋)
1512, 13, 14syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘(𝐼𝑋)) = 𝑋)
16 simprr 772 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → 𝑌 ∈ ran 𝐼)
17 f1ocnvfv2 7252 . . . 4 ((𝐼:dom 𝐼1-1-onto→ran 𝐼𝑌 ∈ ran 𝐼) → (𝐼‘(𝐼𝑌)) = 𝑌)
1812, 16, 17syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝐼‘(𝐼𝑌)) = 𝑌)
1915, 18ineq12d 4184 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → ((𝐼‘(𝐼𝑋)) ∩ (𝐼‘(𝐼𝑌))) = (𝑋𝑌))
2010, 19eqtr2d 2765 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 ∈ ran 𝐼𝑌 ∈ ran 𝐼)) → (𝑋𝑌) = (𝐼‘((𝐼𝑋) (𝐼𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3913  ccnv 5637  dom cdm 5638  ran crn 5639  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  meetcmee 18273  HLchlt 39343  LHypclh 39978  DIsoAcdia 41022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-disoa 41023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator