![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diainN | Structured version Visualization version GIF version |
Description: Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diam.m | ⊢ ∧ = (meet‘𝐾) |
diam.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diam.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diainN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | diam.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | diam.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
4 | 2, 3 | diacnvclN 37668 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ dom 𝐼) |
5 | 4 | adantrr 713 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (◡𝐼‘𝑋) ∈ dom 𝐼) |
6 | 2, 3 | diacnvclN 37668 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → (◡𝐼‘𝑌) ∈ dom 𝐼) |
7 | 6 | adantrl 712 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (◡𝐼‘𝑌) ∈ dom 𝐼) |
8 | diam.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
9 | 8, 2, 3 | diameetN 37673 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((◡𝐼‘𝑋) ∈ dom 𝐼 ∧ (◡𝐼‘𝑌) ∈ dom 𝐼)) → (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) = ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌)))) |
10 | 1, 5, 7, 9 | syl12anc 833 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) = ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌)))) |
11 | 2, 3 | diaf11N 37666 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
12 | 11 | adantr 481 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
13 | simprl 767 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → 𝑋 ∈ ran 𝐼) | |
14 | f1ocnvfv2 6890 | . . . 4 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) | |
15 | 12, 13, 14 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
16 | simprr 769 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → 𝑌 ∈ ran 𝐼) | |
17 | f1ocnvfv2 6890 | . . . 4 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑌 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) | |
18 | 12, 16, 17 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) |
19 | 15, 18 | ineq12d 4105 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌))) = (𝑋 ∩ 𝑌)) |
20 | 10, 19 | eqtr2d 2830 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ∩ cin 3853 ◡ccnv 5434 dom cdm 5435 ran crn 5436 –1-1-onto→wf1o 6216 ‘cfv 6217 (class class class)co 7007 meetcmee 17372 HLchlt 35967 LHypclh 36601 DIsoAcdia 37645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-riotaBAD 35570 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-iin 4822 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-1st 7536 df-2nd 7537 df-undef 7781 df-map 8249 df-proset 17355 df-poset 17373 df-plt 17385 df-lub 17401 df-glb 17402 df-join 17403 df-meet 17404 df-p0 17466 df-p1 17467 df-lat 17473 df-clat 17535 df-oposet 35793 df-ol 35795 df-oml 35796 df-covers 35883 df-ats 35884 df-atl 35915 df-cvlat 35939 df-hlat 35968 df-llines 36115 df-lplanes 36116 df-lvols 36117 df-lines 36118 df-psubsp 36120 df-pmap 36121 df-padd 36413 df-lhyp 36605 df-laut 36606 df-ldil 36721 df-ltrn 36722 df-trl 36776 df-disoa 37646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |