Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diainN | Structured version Visualization version GIF version |
Description: Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diam.m | ⊢ ∧ = (meet‘𝐾) |
diam.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diam.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diainN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | diam.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | diam.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
4 | 2, 3 | diacnvclN 38710 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ dom 𝐼) |
5 | 4 | adantrr 717 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (◡𝐼‘𝑋) ∈ dom 𝐼) |
6 | 2, 3 | diacnvclN 38710 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → (◡𝐼‘𝑌) ∈ dom 𝐼) |
7 | 6 | adantrl 716 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (◡𝐼‘𝑌) ∈ dom 𝐼) |
8 | diam.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
9 | 8, 2, 3 | diameetN 38715 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((◡𝐼‘𝑋) ∈ dom 𝐼 ∧ (◡𝐼‘𝑌) ∈ dom 𝐼)) → (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) = ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌)))) |
10 | 1, 5, 7, 9 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) = ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌)))) |
11 | 2, 3 | diaf11N 38708 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
12 | 11 | adantr 484 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
13 | simprl 771 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → 𝑋 ∈ ran 𝐼) | |
14 | f1ocnvfv2 7047 | . . . 4 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) | |
15 | 12, 13, 14 | syl2anc 587 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
16 | simprr 773 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → 𝑌 ∈ ran 𝐼) | |
17 | f1ocnvfv2 7047 | . . . 4 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑌 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) | |
18 | 12, 16, 17 | syl2anc 587 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) |
19 | 15, 18 | ineq12d 4104 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌))) = (𝑋 ∩ 𝑌)) |
20 | 10, 19 | eqtr2d 2774 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∩ cin 3842 ◡ccnv 5524 dom cdm 5525 ran crn 5526 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7172 meetcmee 17673 HLchlt 37009 LHypclh 37643 DIsoAcdia 38687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-riotaBAD 36612 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-1st 7716 df-2nd 7717 df-undef 7970 df-map 8441 df-proset 17656 df-poset 17674 df-plt 17686 df-lub 17702 df-glb 17703 df-join 17704 df-meet 17705 df-p0 17767 df-p1 17768 df-lat 17774 df-clat 17836 df-oposet 36835 df-ol 36837 df-oml 36838 df-covers 36925 df-ats 36926 df-atl 36957 df-cvlat 36981 df-hlat 37010 df-llines 37157 df-lplanes 37158 df-lvols 37159 df-lines 37160 df-psubsp 37162 df-pmap 37163 df-padd 37455 df-lhyp 37647 df-laut 37648 df-ldil 37763 df-ltrn 37764 df-trl 37818 df-disoa 38688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |