![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diainN | Structured version Visualization version GIF version |
Description: Inverse partial isomorphism A of an intersection. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diam.m | ⊢ ∧ = (meet‘𝐾) |
diam.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diam.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diainN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | diam.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | diam.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
4 | 2, 3 | diacnvclN 41008 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ dom 𝐼) |
5 | 4 | adantrr 716 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (◡𝐼‘𝑋) ∈ dom 𝐼) |
6 | 2, 3 | diacnvclN 41008 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ ran 𝐼) → (◡𝐼‘𝑌) ∈ dom 𝐼) |
7 | 6 | adantrl 715 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (◡𝐼‘𝑌) ∈ dom 𝐼) |
8 | diam.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
9 | 8, 2, 3 | diameetN 41013 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((◡𝐼‘𝑋) ∈ dom 𝐼 ∧ (◡𝐼‘𝑌) ∈ dom 𝐼)) → (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) = ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌)))) |
10 | 1, 5, 7, 9 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌))) = ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌)))) |
11 | 2, 3 | diaf11N 41006 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
12 | 11 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
13 | simprl 770 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → 𝑋 ∈ ran 𝐼) | |
14 | f1ocnvfv2 7313 | . . . 4 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) | |
15 | 12, 13, 14 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
16 | simprr 772 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → 𝑌 ∈ ran 𝐼) | |
17 | f1ocnvfv2 7313 | . . . 4 ⊢ ((𝐼:dom 𝐼–1-1-onto→ran 𝐼 ∧ 𝑌 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) | |
18 | 12, 16, 17 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝐼‘(◡𝐼‘𝑌)) = 𝑌) |
19 | 15, 18 | ineq12d 4242 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → ((𝐼‘(◡𝐼‘𝑋)) ∩ (𝐼‘(◡𝐼‘𝑌))) = (𝑋 ∩ 𝑌)) |
20 | 10, 19 | eqtr2d 2781 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ ran 𝐼 ∧ 𝑌 ∈ ran 𝐼)) → (𝑋 ∩ 𝑌) = (𝐼‘((◡𝐼‘𝑋) ∧ (◡𝐼‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ◡ccnv 5699 dom cdm 5700 ran crn 5701 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 meetcmee 18382 HLchlt 39306 LHypclh 39941 DIsoAcdia 40985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-undef 8314 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-disoa 40986 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |