MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdivdivd Structured version   Visualization version   GIF version

Theorem divdivdivd 12097
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divmuldivd.4 (𝜑𝐷 ∈ ℂ)
divmuldivd.5 (𝜑𝐵 ≠ 0)
divmuldivd.6 (𝜑𝐷 ≠ 0)
divdivdivd.7 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
divdivdivd (𝜑 → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))

Proof of Theorem divdivdivd
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . . 3 (𝜑𝐵 ∈ ℂ)
3 divmuldivd.5 . . 3 (𝜑𝐵 ≠ 0)
42, 3jca 511 . 2 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
5 divmuld.3 . . 3 (𝜑𝐶 ∈ ℂ)
6 divdivdivd.7 . . 3 (𝜑𝐶 ≠ 0)
75, 6jca 511 . 2 (𝜑 → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
8 divmuldivd.4 . . 3 (𝜑𝐷 ∈ ℂ)
9 divmuldivd.6 . . 3 (𝜑𝐷 ≠ 0)
108, 9jca 511 . 2 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
11 divdivdiv 11975 . 2 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
121, 4, 7, 10, 11syl22anc 839 1 (𝜑 → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2940  (class class class)co 7438  cc 11160  0cc0 11162   · cmul 11167   / cdiv 11927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-po 5601  df-so 5602  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928
This theorem is referenced by:  pcadd  16932  pnt  27684  wallispilem4  46052  stirlinglem4  46061  stirlinglem10  46067
  Copyright terms: Public domain W3C validator