![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divdivdivd | Structured version Visualization version GIF version |
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divmuldivd.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
divmuldivd.5 | ⊢ (𝜑 → 𝐵 ≠ 0) |
divmuldivd.6 | ⊢ (𝜑 → 𝐷 ≠ 0) |
divdivdivd.7 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
divdivdivd | ⊢ (𝜑 → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuldivd.5 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | 2, 3 | jca 509 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
5 | divmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
6 | divdivdivd.7 | . . 3 ⊢ (𝜑 → 𝐶 ≠ 0) | |
7 | 5, 6 | jca 509 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) |
8 | divmuldivd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
9 | divmuldivd.6 | . . 3 ⊢ (𝜑 → 𝐷 ≠ 0) | |
10 | 8, 9 | jca 509 | . 2 ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) |
11 | divdivdiv 11053 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) | |
12 | 1, 4, 7, 10, 11 | syl22anc 874 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 (class class class)co 6906 ℂcc 10251 0cc0 10253 · cmul 10258 / cdiv 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-po 5264 df-so 5265 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 |
This theorem is referenced by: pcadd 15965 pnt 25717 wallispilem4 41080 stirlinglem4 41089 stirlinglem10 41095 |
Copyright terms: Public domain | W3C validator |