![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divdivdivd | Structured version Visualization version GIF version |
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divmuldivd.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
divmuldivd.5 | ⊢ (𝜑 → 𝐵 ≠ 0) |
divmuldivd.6 | ⊢ (𝜑 → 𝐷 ≠ 0) |
divdivdivd.7 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
divdivdivd | ⊢ (𝜑 → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmuldivd.5 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | 2, 3 | jca 511 | . 2 ⊢ (𝜑 → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
5 | divmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
6 | divdivdivd.7 | . . 3 ⊢ (𝜑 → 𝐶 ≠ 0) | |
7 | 5, 6 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) |
8 | divmuldivd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
9 | divmuldivd.6 | . . 3 ⊢ (𝜑 → 𝐷 ≠ 0) | |
10 | 8, 9 | jca 511 | . 2 ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) |
11 | divdivdiv 11975 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) | |
12 | 1, 4, 7, 10, 11 | syl22anc 839 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 (class class class)co 7438 ℂcc 11160 0cc0 11162 · cmul 11167 / cdiv 11927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 |
This theorem is referenced by: pcadd 16932 pnt 27684 wallispilem4 46052 stirlinglem4 46061 stirlinglem10 46067 |
Copyright terms: Public domain | W3C validator |