Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > diveq1bd | Structured version Visualization version GIF version |
Description: If two complex numbers are equal, their quotient is one. One-way deduction form of diveq1 11553. Converse of diveq1d 11646. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
diveq1bd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
diveq1bd.2 | ⊢ (𝜑 → 𝐵 ≠ 0) |
diveq1bd.3 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
diveq1bd | ⊢ (𝜑 → (𝐴 / 𝐵) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diveq1bd.3 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | diveq1bd.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | 1, 2 | eqeltrd 2840 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
4 | diveq1bd.2 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
5 | 3, 2, 4 | diveq1ad 11647 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) |
6 | 1, 5 | mpbird 260 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 (class class class)co 7235 ℂcc 10757 0cc0 10759 1c1 10760 / cdiv 11519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5472 df-po 5486 df-so 5487 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-div 11520 |
This theorem is referenced by: dvid 24847 efif1olem4 25466 angpined 25745 probmeasb 32141 bj-bary1 35254 int-mulsimpd 41515 |
Copyright terms: Public domain | W3C validator |