Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem4 Structured version   Visualization version   GIF version

Theorem stirlinglem4 46092
Description: Algebraic manipulation of ((𝐵 n ) - ( B (𝑛 + 1))). It will be used in other theorems to show that 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem4.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem4.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem4.3 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
Assertion
Ref Expression
stirlinglem4 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) = (𝐽𝑁))
Distinct variable group:   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐽(𝑛)

Proof of Theorem stirlinglem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnre 12273 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 nnnn0 12533 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32nn0ge0d 12590 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
41, 3ge0p1rpd 13107 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ+)
5 nnrp 13046 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
64, 5rpdivcld 13094 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℝ+)
76rpsqrtcld 15450 . . . . 5 (𝑁 ∈ ℕ → (√‘((𝑁 + 1) / 𝑁)) ∈ ℝ+)
8 nnz 12634 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
96, 8rpexpcld 14286 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) / 𝑁)↑𝑁) ∈ ℝ+)
107, 9rpmulcld 13093 . . . 4 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) ∈ ℝ+)
11 epr 16244 . . . . 5 e ∈ ℝ+
1211a1i 11 . . . 4 (𝑁 ∈ ℕ → e ∈ ℝ+)
1310, 12relogdivd 26668 . . 3 (𝑁 ∈ ℕ → (log‘(((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e)) = ((log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) − (log‘e)))
147, 9relogmuld 26667 . . . . . 6 (𝑁 ∈ ℕ → (log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) = ((log‘(√‘((𝑁 + 1) / 𝑁))) + (log‘(((𝑁 + 1) / 𝑁)↑𝑁))))
15 logsqrt 26746 . . . . . . . 8 (((𝑁 + 1) / 𝑁) ∈ ℝ+ → (log‘(√‘((𝑁 + 1) / 𝑁))) = ((log‘((𝑁 + 1) / 𝑁)) / 2))
166, 15syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (log‘(√‘((𝑁 + 1) / 𝑁))) = ((log‘((𝑁 + 1) / 𝑁)) / 2))
17 relogexp 26638 . . . . . . . 8 ((((𝑁 + 1) / 𝑁) ∈ ℝ+𝑁 ∈ ℤ) → (log‘(((𝑁 + 1) / 𝑁)↑𝑁)) = (𝑁 · (log‘((𝑁 + 1) / 𝑁))))
186, 8, 17syl2anc 584 . . . . . . 7 (𝑁 ∈ ℕ → (log‘(((𝑁 + 1) / 𝑁)↑𝑁)) = (𝑁 · (log‘((𝑁 + 1) / 𝑁))))
1916, 18oveq12d 7449 . . . . . 6 (𝑁 ∈ ℕ → ((log‘(√‘((𝑁 + 1) / 𝑁))) + (log‘(((𝑁 + 1) / 𝑁)↑𝑁))) = (((log‘((𝑁 + 1) / 𝑁)) / 2) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))))
2014, 19eqtrd 2777 . . . . 5 (𝑁 ∈ ℕ → (log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) = (((log‘((𝑁 + 1) / 𝑁)) / 2) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))))
21 peano2nn 12278 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
2221nncnd 12282 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
23 nncn 12274 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
24 nnne0 12300 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2522, 23, 24divcld 12043 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ∈ ℂ)
2621nnne0d 12316 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
2722, 23, 26, 24divne0d 12059 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) / 𝑁) ≠ 0)
2825, 27logcld 26612 . . . . . . 7 (𝑁 ∈ ℕ → (log‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
29 2cnd 12344 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℂ)
30 2rp 13039 . . . . . . . . 9 2 ∈ ℝ+
3130a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
3231rpne0d 13082 . . . . . . 7 (𝑁 ∈ ℕ → 2 ≠ 0)
3328, 29, 32divrec2d 12047 . . . . . 6 (𝑁 ∈ ℕ → ((log‘((𝑁 + 1) / 𝑁)) / 2) = ((1 / 2) · (log‘((𝑁 + 1) / 𝑁))))
3433oveq1d 7446 . . . . 5 (𝑁 ∈ ℕ → (((log‘((𝑁 + 1) / 𝑁)) / 2) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))) = (((1 / 2) · (log‘((𝑁 + 1) / 𝑁))) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))))
35 1cnd 11256 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3635halfcld 12511 . . . . . . 7 (𝑁 ∈ ℕ → (1 / 2) ∈ ℂ)
3736, 23, 28adddird 11286 . . . . . 6 (𝑁 ∈ ℕ → (((1 / 2) + 𝑁) · (log‘((𝑁 + 1) / 𝑁))) = (((1 / 2) · (log‘((𝑁 + 1) / 𝑁))) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))))
3823, 29, 32divcan4d 12049 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 · 2) / 2) = 𝑁)
3923, 29mulcomd 11282 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 · 2) = (2 · 𝑁))
4039oveq1d 7446 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 · 2) / 2) = ((2 · 𝑁) / 2))
4138, 40eqtr3d 2779 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 = ((2 · 𝑁) / 2))
4241oveq2d 7447 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / 2) + 𝑁) = ((1 / 2) + ((2 · 𝑁) / 2)))
4329, 23mulcld 11281 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
4435, 43, 29, 32divdird 12081 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 + (2 · 𝑁)) / 2) = ((1 / 2) + ((2 · 𝑁) / 2)))
4542, 44eqtr4d 2780 . . . . . . 7 (𝑁 ∈ ℕ → ((1 / 2) + 𝑁) = ((1 + (2 · 𝑁)) / 2))
4645oveq1d 7446 . . . . . 6 (𝑁 ∈ ℕ → (((1 / 2) + 𝑁) · (log‘((𝑁 + 1) / 𝑁))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
4737, 46eqtr3d 2779 . . . . 5 (𝑁 ∈ ℕ → (((1 / 2) · (log‘((𝑁 + 1) / 𝑁))) + (𝑁 · (log‘((𝑁 + 1) / 𝑁)))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
4820, 34, 473eqtrd 2781 . . . 4 (𝑁 ∈ ℕ → (log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
49 loge 26628 . . . . 5 (log‘e) = 1
5049a1i 11 . . . 4 (𝑁 ∈ ℕ → (log‘e) = 1)
5148, 50oveq12d 7449 . . 3 (𝑁 ∈ ℕ → ((log‘((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁))) − (log‘e)) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
5213, 51eqtrd 2777 . 2 (𝑁 ∈ ℕ → (log‘(((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e)) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
53 stirlinglem4.1 . . . . . . 7 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
5453stirlinglem2 46090 . . . . . 6 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
5554relogcld 26665 . . . . 5 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
56 nfcv 2905 . . . . . 6 𝑛𝑁
57 nfcv 2905 . . . . . . 7 𝑛log
58 nfmpt1 5250 . . . . . . . . 9 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
5953, 58nfcxfr 2903 . . . . . . . 8 𝑛𝐴
6059, 56nffv 6916 . . . . . . 7 𝑛(𝐴𝑁)
6157, 60nffv 6916 . . . . . 6 𝑛(log‘(𝐴𝑁))
62 2fveq3 6911 . . . . . 6 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
63 stirlinglem4.2 . . . . . 6 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
6456, 61, 62, 63fvmptf 7037 . . . . 5 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
6555, 64mpdan 687 . . . 4 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
66 nfcv 2905 . . . . . . . 8 𝑘(log‘(𝐴𝑛))
67 nfcv 2905 . . . . . . . . . 10 𝑛𝑘
6859, 67nffv 6916 . . . . . . . . 9 𝑛(𝐴𝑘)
6957, 68nffv 6916 . . . . . . . 8 𝑛(log‘(𝐴𝑘))
70 2fveq3 6911 . . . . . . . 8 (𝑛 = 𝑘 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑘)))
7166, 69, 70cbvmpt 5253 . . . . . . 7 (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛))) = (𝑘 ∈ ℕ ↦ (log‘(𝐴𝑘)))
7263, 71eqtri 2765 . . . . . 6 𝐵 = (𝑘 ∈ ℕ ↦ (log‘(𝐴𝑘)))
7372a1i 11 . . . . 5 (𝑁 ∈ ℕ → 𝐵 = (𝑘 ∈ ℕ ↦ (log‘(𝐴𝑘))))
74 simpr 484 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → 𝑘 = (𝑁 + 1))
7574fveq2d 6910 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (𝐴𝑘) = (𝐴‘(𝑁 + 1)))
7675fveq2d 6910 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (log‘(𝐴𝑘)) = (log‘(𝐴‘(𝑁 + 1))))
7753stirlinglem2 46090 . . . . . . 7 ((𝑁 + 1) ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7821, 77syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7978relogcld 26665 . . . . 5 (𝑁 ∈ ℕ → (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ)
8073, 76, 21, 79fvmptd 7023 . . . 4 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8165, 80oveq12d 7449 . . 3 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) = ((log‘(𝐴𝑁)) − (log‘(𝐴‘(𝑁 + 1)))))
8254, 78relogdivd 26668 . . 3 (𝑁 ∈ ℕ → (log‘((𝐴𝑁) / (𝐴‘(𝑁 + 1)))) = ((log‘(𝐴𝑁)) − (log‘(𝐴‘(𝑁 + 1)))))
83 faccl 14322 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
84 nnrp 13046 . . . . . . . . 9 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+)
852, 83, 843syl 18 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ+)
8631, 5rpmulcld 13093 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
8786rpsqrtcld 15450 . . . . . . . . 9 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ∈ ℝ+)
885, 12rpdivcld 13094 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 / e) ∈ ℝ+)
8988, 8rpexpcld 14286 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ∈ ℝ+)
9087, 89rpmulcld 13093 . . . . . . . 8 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℝ+)
9185, 90rpdivcld 13094 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
9253a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
93 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁)
9493fveq2d 6910 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → (!‘𝑛) = (!‘𝑁))
9593oveq2d 7447 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → (2 · 𝑛) = (2 · 𝑁))
9695fveq2d 6910 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑁)))
9793oveq1d 7446 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → (𝑛 / e) = (𝑁 / e))
9897, 93oveq12d 7449 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → ((𝑛 / e)↑𝑛) = ((𝑁 / e)↑𝑁))
9996, 98oveq12d 7449 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)))
10094, 99oveq12d 7449 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑛 = 𝑁) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
101 simpl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℕ)
10285rpcnd 13079 . . . . . . . . . 10 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℂ)
103102adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (!‘𝑁) ∈ ℂ)
104 2cnd 12344 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 2 ∈ ℂ)
105101nncnd 12282 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℂ)
106104, 105mulcld 11281 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (2 · 𝑁) ∈ ℂ)
107106sqrtcld 15476 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (√‘(2 · 𝑁)) ∈ ℂ)
108 ere 16125 . . . . . . . . . . . . . 14 e ∈ ℝ
109108recni 11275 . . . . . . . . . . . . 13 e ∈ ℂ
110109a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → e ∈ ℂ)
111 0re 11263 . . . . . . . . . . . . . 14 0 ∈ ℝ
112 epos 16243 . . . . . . . . . . . . . 14 0 < e
113111, 112gtneii 11373 . . . . . . . . . . . . 13 e ≠ 0
114113a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → e ≠ 0)
115105, 110, 114divcld 12043 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝑁 / e) ∈ ℂ)
116101nnnn0d 12587 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℕ0)
117115, 116expcld 14186 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((𝑁 / e)↑𝑁) ∈ ℂ)
118107, 117mulcld 11281 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℂ)
11987rpne0d 13082 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ≠ 0)
120119adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (√‘(2 · 𝑁)) ≠ 0)
121101nnne0d 12316 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ≠ 0)
122105, 110, 121, 114divne0d 12059 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝑁 / e) ≠ 0)
123101nnzd 12640 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℤ)
124115, 122, 123expne0d 14192 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((𝑁 / e)↑𝑁) ≠ 0)
125107, 117, 120, 124mulne0d 11915 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ≠ 0)
126103, 118, 125divcld 12043 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℂ)
12792, 100, 101, 126fvmptd 7023 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
12891, 127mpdan 687 . . . . . 6 (𝑁 ∈ ℕ → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
129 nfcv 2905 . . . . . . . . . 10 𝑘((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
130 nfcv 2905 . . . . . . . . . 10 𝑛((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
131 fveq2 6906 . . . . . . . . . . 11 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
132 oveq2 7439 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
133132fveq2d 6910 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
134 oveq1 7438 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (𝑛 / e) = (𝑘 / e))
135 id 22 . . . . . . . . . . . . 13 (𝑛 = 𝑘𝑛 = 𝑘)
136134, 135oveq12d 7449 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
137133, 136oveq12d 7449 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
138131, 137oveq12d 7449 . . . . . . . . . 10 (𝑛 = 𝑘 → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
139129, 130, 138cbvmpt 5253 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
14053, 139eqtri 2765 . . . . . . . 8 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
141140a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))))
14274fveq2d 6910 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (!‘𝑘) = (!‘(𝑁 + 1)))
14374oveq2d 7447 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (2 · 𝑘) = (2 · (𝑁 + 1)))
144143fveq2d 6910 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (√‘(2 · 𝑘)) = (√‘(2 · (𝑁 + 1))))
14574oveq1d 7446 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → (𝑘 / e) = ((𝑁 + 1) / e))
146145, 74oveq12d 7449 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → ((𝑘 / e)↑𝑘) = (((𝑁 + 1) / e)↑(𝑁 + 1)))
147144, 146oveq12d 7449 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) = ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
148142, 147oveq12d 7449 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 = (𝑁 + 1)) → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) = ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))
14921nnnn0d 12587 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
150 faccl 14322 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
151 nnrp 13046 . . . . . . . . 9 ((!‘(𝑁 + 1)) ∈ ℕ → (!‘(𝑁 + 1)) ∈ ℝ+)
152149, 150, 1513syl 18 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) ∈ ℝ+)
15331, 4rpmulcld 13093 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · (𝑁 + 1)) ∈ ℝ+)
154153rpsqrtcld 15450 . . . . . . . . 9 (𝑁 ∈ ℕ → (√‘(2 · (𝑁 + 1))) ∈ ℝ+)
1554, 12rpdivcld 13094 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 1) / e) ∈ ℝ+)
1568peano2zd 12725 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℤ)
157155, 156rpexpcld 14286 . . . . . . . . 9 (𝑁 ∈ ℕ → (((𝑁 + 1) / e)↑(𝑁 + 1)) ∈ ℝ+)
158154, 157rpmulcld 13093 . . . . . . . 8 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) ∈ ℝ+)
159152, 158rpdivcld 13094 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) ∈ ℝ+)
160141, 148, 21, 159fvmptd 7023 . . . . . 6 (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) = ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))
161128, 160oveq12d 7449 . . . . 5 (𝑁 ∈ ℕ → ((𝐴𝑁) / (𝐴‘(𝑁 + 1))) = (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
162 facp1 14317 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
1632, 162syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
164163oveq1d 7446 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) = (((!‘𝑁) · (𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))
165158rpcnd 13079 . . . . . . . . 9 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) ∈ ℂ)
166158rpne0d 13082 . . . . . . . . 9 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) ≠ 0)
167102, 22, 165, 166divassd 12078 . . . . . . . 8 (𝑁 ∈ ℕ → (((!‘𝑁) · (𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) = ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
168164, 167eqtrd 2777 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) = ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
169168oveq2d 7447 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))))
17090rpcnd 13079 . . . . . . 7 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℂ)
17122, 165, 166divcld 12043 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) ∈ ℂ)
172102, 171mulcld 11281 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) ∈ ℂ)
17390rpne0d 13082 . . . . . . 7 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ≠ 0)
17485rpne0d 13082 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘𝑁) ≠ 0)
17522, 165, 26, 166divne0d 12059 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))) ≠ 0)
176102, 171, 174, 175mulne0d 11915 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) ≠ 0)
177102, 170, 172, 173, 176divdiv32d 12068 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) = (((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
178102, 102, 171, 174, 175divdiv1d 12074 . . . . . . . . 9 (𝑁 ∈ ℕ → (((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = ((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))))
179178eqcomd 2743 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) = (((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
180179oveq1d 7446 . . . . . . 7 (𝑁 ∈ ℕ → (((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
181102, 174dividd 12041 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘𝑁) / (!‘𝑁)) = 1)
182181oveq1d 7446 . . . . . . . 8 (𝑁 ∈ ℕ → (((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = (1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))))
183182oveq1d 7446 . . . . . . 7 (𝑁 ∈ ℕ → ((((!‘𝑁) / (!‘𝑁)) / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
18422, 165, 26, 166recdivd 12060 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = (((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)))
185184oveq1d 7446 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
186165, 22, 26divcld 12043 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) ∈ ℂ)
18787rpcnd 13079 . . . . . . . . . 10 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ∈ ℂ)
18889rpcnd 13079 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ∈ ℂ)
18989rpne0d 13082 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ≠ 0)
190186, 187, 188, 119, 189divdiv1d 12074 . . . . . . . . 9 (𝑁 ∈ ℕ → (((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / (√‘(2 · 𝑁))) / ((𝑁 / e)↑𝑁)) = ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
191165, 22, 187, 26, 119divdiv32d 12068 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / (√‘(2 · 𝑁))) = ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (√‘(2 · 𝑁))) / (𝑁 + 1)))
192154rpcnd 13079 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (√‘(2 · (𝑁 + 1))) ∈ ℂ)
193157rpcnd 13079 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((𝑁 + 1) / e)↑(𝑁 + 1)) ∈ ℂ)
194192, 193, 187, 119div23d 12080 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (√‘(2 · 𝑁))) = (((√‘(2 · (𝑁 + 1))) / (√‘(2 · 𝑁))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
19531rpred 13077 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 2 ∈ ℝ)
19631rpge0d 13081 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 0 ≤ 2)
19721nnred 12281 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
198149nn0ge0d 12590 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 0 ≤ (𝑁 + 1))
199195, 196, 197, 198sqrtmuld 15463 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘(2 · (𝑁 + 1))) = ((√‘2) · (√‘(𝑁 + 1))))
200195, 196, 1, 3sqrtmuld 15463 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) = ((√‘2) · (√‘𝑁)))
201199, 200oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) / (√‘(2 · 𝑁))) = (((√‘2) · (√‘(𝑁 + 1))) / ((√‘2) · (√‘𝑁))))
20229sqrtcld 15476 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘2) ∈ ℂ)
20322sqrtcld 15476 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘(𝑁 + 1)) ∈ ℂ)
20423sqrtcld 15476 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘𝑁) ∈ ℂ)
20531rpsqrtcld 15450 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (√‘2) ∈ ℝ+)
206205rpne0d 13082 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘2) ≠ 0)
2075rpsqrtcld 15450 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (√‘𝑁) ∈ ℝ+)
208207rpne0d 13082 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (√‘𝑁) ≠ 0)
209202, 202, 203, 204, 206, 208divmuldivd 12084 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (((√‘2) / (√‘2)) · ((√‘(𝑁 + 1)) / (√‘𝑁))) = (((√‘2) · (√‘(𝑁 + 1))) / ((√‘2) · (√‘𝑁))))
210202, 206dividd 12041 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((√‘2) / (√‘2)) = 1)
211197, 198, 5sqrtdivd 15462 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (√‘((𝑁 + 1) / 𝑁)) = ((√‘(𝑁 + 1)) / (√‘𝑁)))
212211eqcomd 2743 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((√‘(𝑁 + 1)) / (√‘𝑁)) = (√‘((𝑁 + 1) / 𝑁)))
213210, 212oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (((√‘2) / (√‘2)) · ((√‘(𝑁 + 1)) / (√‘𝑁))) = (1 · (√‘((𝑁 + 1) / 𝑁))))
214201, 209, 2133eqtr2d 2783 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((√‘(2 · (𝑁 + 1))) / (√‘(2 · 𝑁))) = (1 · (√‘((𝑁 + 1) / 𝑁))))
215214oveq1d 7446 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((√‘(2 · (𝑁 + 1))) / (√‘(2 · 𝑁))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) = ((1 · (√‘((𝑁 + 1) / 𝑁))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
21625sqrtcld 15476 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (√‘((𝑁 + 1) / 𝑁)) ∈ ℂ)
217216mullidd 11279 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (1 · (√‘((𝑁 + 1) / 𝑁))) = (√‘((𝑁 + 1) / 𝑁)))
218217oveq1d 7446 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((1 · (√‘((𝑁 + 1) / 𝑁))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) = ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
219194, 215, 2183eqtrd 2781 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (√‘(2 · 𝑁))) = ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))))
220219oveq1d 7446 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (√‘(2 · 𝑁))) / (𝑁 + 1)) = (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)))
221191, 220eqtrd 2777 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / (√‘(2 · 𝑁))) = (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)))
222221oveq1d 7446 . . . . . . . . 9 (𝑁 ∈ ℕ → (((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / (√‘(2 · 𝑁))) / ((𝑁 / e)↑𝑁)) = ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((𝑁 / e)↑𝑁)))
223190, 222eqtr3d 2779 . . . . . . . 8 (𝑁 ∈ ℕ → ((((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((𝑁 / e)↑𝑁)))
224216, 193mulcld 11281 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) ∈ ℂ)
225224, 22, 188, 26, 189divdiv32d 12068 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((𝑁 / e)↑𝑁)) = ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / ((𝑁 / e)↑𝑁)) / (𝑁 + 1)))
226216, 193, 188, 189divassd 12078 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / ((𝑁 / e)↑𝑁)) = ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1) / e)↑(𝑁 + 1)) / ((𝑁 / e)↑𝑁))))
22712rpcnd 13079 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → e ∈ ℂ)
22812rpne0d 13082 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → e ≠ 0)
22922, 227, 228, 149expdivd 14200 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((𝑁 + 1) / e)↑(𝑁 + 1)) = (((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))))
23023, 227, 228, 2expdivd 14200 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) = ((𝑁𝑁) / (e↑𝑁)))
231229, 230oveq12d 7449 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((((𝑁 + 1) / e)↑(𝑁 + 1)) / ((𝑁 / e)↑𝑁)) = ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁))))
232231oveq2d 7447 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1) / e)↑(𝑁 + 1)) / ((𝑁 / e)↑𝑁))) = ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁)))))
23322, 149expcld 14186 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1)↑(𝑁 + 1)) ∈ ℂ)
234227, 149expcld 14186 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (e↑(𝑁 + 1)) ∈ ℂ)
23523, 2expcld 14186 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁𝑁) ∈ ℂ)
236227, 2expcld 14186 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (e↑𝑁) ∈ ℂ)
237227, 228, 156expne0d 14192 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (e↑(𝑁 + 1)) ≠ 0)
238227, 228, 8expne0d 14192 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (e↑𝑁) ≠ 0)
23923, 24, 8expne0d 14192 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁𝑁) ≠ 0)
240233, 234, 235, 236, 237, 238, 239divdivdivd 12090 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁))) = ((((𝑁 + 1)↑(𝑁 + 1)) · (e↑𝑁)) / ((e↑(𝑁 + 1)) · (𝑁𝑁))))
241233, 236mulcomd 11282 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((𝑁 + 1)↑(𝑁 + 1)) · (e↑𝑁)) = ((e↑𝑁) · ((𝑁 + 1)↑(𝑁 + 1))))
242241oveq1d 7446 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) · (e↑𝑁)) / ((e↑(𝑁 + 1)) · (𝑁𝑁))) = (((e↑𝑁) · ((𝑁 + 1)↑(𝑁 + 1))) / ((e↑(𝑁 + 1)) · (𝑁𝑁))))
243236, 234, 233, 235, 237, 239divmuldivd 12084 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((e↑𝑁) / (e↑(𝑁 + 1))) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = (((e↑𝑁) · ((𝑁 + 1)↑(𝑁 + 1))) / ((e↑(𝑁 + 1)) · (𝑁𝑁))))
244227, 2expp1d 14187 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (e↑(𝑁 + 1)) = ((e↑𝑁) · e))
245244oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → ((e↑𝑁) / (e↑(𝑁 + 1))) = ((e↑𝑁) / ((e↑𝑁) · e)))
246236, 236, 227, 238, 228divdiv1d 12074 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (((e↑𝑁) / (e↑𝑁)) / e) = ((e↑𝑁) / ((e↑𝑁) · e)))
247236, 238dividd 12041 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → ((e↑𝑁) / (e↑𝑁)) = 1)
248247oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (((e↑𝑁) / (e↑𝑁)) / e) = (1 / e))
249245, 246, 2483eqtr2d 2783 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((e↑𝑁) / (e↑(𝑁 + 1))) = (1 / e))
250249oveq1d 7446 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (((e↑𝑁) / (e↑(𝑁 + 1))) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))))
251243, 250eqtr3d 2779 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((e↑𝑁) · ((𝑁 + 1)↑(𝑁 + 1))) / ((e↑(𝑁 + 1)) · (𝑁𝑁))) = ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))))
252240, 242, 2513eqtrd 2781 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁))) = ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))))
253252oveq2d 7447 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (e↑(𝑁 + 1))) / ((𝑁𝑁) / (e↑𝑁)))) = ((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))))
254226, 232, 2533eqtrd 2781 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / ((𝑁 / e)↑𝑁)) = ((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))))
255254oveq1d 7446 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / ((𝑁 / e)↑𝑁)) / (𝑁 + 1)) = (((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))) / (𝑁 + 1)))
256233, 235, 239divcld 12043 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) ∈ ℂ)
25735, 227, 256, 228div32d 12066 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = (1 · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e)))
258256, 227, 228divcld 12043 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e) ∈ ℂ)
259258mullidd 11279 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e)) = ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e))
260257, 259eqtrd 2777 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e))
261260oveq2d 7447 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))) = (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e)))
262227, 228reccld 12036 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 / e) ∈ ℂ)
263262, 256mulcld 11281 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) ∈ ℂ)
264216, 263, 22, 26div23d 12080 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))) / (𝑁 + 1)) = (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))))
265216, 22, 26divcld 12043 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) ∈ ℂ)
266265, 256, 227, 228divassd 12078 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e) = (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / e)))
267261, 264, 2663eqtr4d 2787 . . . . . . . . 9 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) · ((1 / e) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)))) / (𝑁 + 1)) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
268225, 255, 2673eqtrd 2781 . . . . . . . 8 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / e)↑(𝑁 + 1))) / (𝑁 + 1)) / ((𝑁 / e)↑𝑁)) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
269185, 223, 2683eqtrd 2781 . . . . . . 7 (𝑁 ∈ ℕ → ((1 / ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
270180, 183, 2693eqtrd 2781 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) / ((!‘𝑁) · ((𝑁 + 1) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1)))))) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
271169, 177, 2703eqtrd 2781 . . . . 5 (𝑁 ∈ ℕ → (((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) / ((!‘(𝑁 + 1)) / ((√‘(2 · (𝑁 + 1))) · (((𝑁 + 1) / e)↑(𝑁 + 1))))) = ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e))
272216, 22, 256, 26div32d 12066 . . . . . . 7 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / (𝑁 + 1))))
27322, 2expp1d 14187 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1)↑(𝑁 + 1)) = (((𝑁 + 1)↑𝑁) · (𝑁 + 1)))
274273oveq1d 7446 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁 + 1)) = ((((𝑁 + 1)↑𝑁) · (𝑁 + 1)) / (𝑁 + 1)))
27522, 2expcld 14186 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1)↑𝑁) ∈ ℂ)
276275, 22, 26divcan4d 12049 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑𝑁) · (𝑁 + 1)) / (𝑁 + 1)) = ((𝑁 + 1)↑𝑁))
277274, 276eqtrd 2777 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁 + 1)) = ((𝑁 + 1)↑𝑁))
278277oveq1d 7446 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁 + 1)) / (𝑁𝑁)) = (((𝑁 + 1)↑𝑁) / (𝑁𝑁)))
279233, 235, 22, 239, 26divdiv32d 12068 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / (𝑁 + 1)) = ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁 + 1)) / (𝑁𝑁)))
28022, 23, 24, 2expdivd 14200 . . . . . . . . 9 (𝑁 ∈ ℕ → (((𝑁 + 1) / 𝑁)↑𝑁) = (((𝑁 + 1)↑𝑁) / (𝑁𝑁)))
281278, 279, 2803eqtr4d 2787 . . . . . . . 8 (𝑁 ∈ ℕ → ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / (𝑁 + 1)) = (((𝑁 + 1) / 𝑁)↑𝑁))
282281oveq2d 7447 . . . . . . 7 (𝑁 ∈ ℕ → ((√‘((𝑁 + 1) / 𝑁)) · ((((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁)) / (𝑁 + 1))) = ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)))
283272, 282eqtrd 2777 . . . . . 6 (𝑁 ∈ ℕ → (((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) = ((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)))
284283oveq1d 7446 . . . . 5 (𝑁 ∈ ℕ → ((((√‘((𝑁 + 1) / 𝑁)) / (𝑁 + 1)) · (((𝑁 + 1)↑(𝑁 + 1)) / (𝑁𝑁))) / e) = (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e))
285161, 271, 2843eqtrd 2781 . . . 4 (𝑁 ∈ ℕ → ((𝐴𝑁) / (𝐴‘(𝑁 + 1))) = (((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e))
286285fveq2d 6910 . . 3 (𝑁 ∈ ℕ → (log‘((𝐴𝑁) / (𝐴‘(𝑁 + 1)))) = (log‘(((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e)))
28781, 82, 2863eqtr2d 2783 . 2 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) = (log‘(((√‘((𝑁 + 1) / 𝑁)) · (((𝑁 + 1) / 𝑁)↑𝑁)) / e)))
28835, 43addcld 11280 . . . . . 6 (𝑁 ∈ ℕ → (1 + (2 · 𝑁)) ∈ ℂ)
289288halfcld 12511 . . . . 5 (𝑁 ∈ ℕ → ((1 + (2 · 𝑁)) / 2) ∈ ℂ)
290289, 28mulcld 11281 . . . 4 (𝑁 ∈ ℕ → (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) ∈ ℂ)
291290, 35subcld 11620 . . 3 (𝑁 ∈ ℕ → ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ)
292 stirlinglem4.3 . . . . 5 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
293292a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) → 𝐽 = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)))
294 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁)
295294oveq2d 7447 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (2 · 𝑛) = (2 · 𝑁))
296295oveq2d 7447 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (1 + (2 · 𝑛)) = (1 + (2 · 𝑁)))
297296oveq1d 7446 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → ((1 + (2 · 𝑛)) / 2) = ((1 + (2 · 𝑁)) / 2))
298294oveq1d 7446 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (𝑛 + 1) = (𝑁 + 1))
299298, 294oveq12d 7449 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → ((𝑛 + 1) / 𝑛) = ((𝑁 + 1) / 𝑁))
300299fveq2d 6910 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (log‘((𝑛 + 1) / 𝑛)) = (log‘((𝑁 + 1) / 𝑁)))
301297, 300oveq12d 7449 . . . . 5 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → (((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) = (((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))))
302301oveq1d 7446 . . . 4 (((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) ∧ 𝑛 = 𝑁) → ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
303 simpl 482 . . . 4 ((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) → 𝑁 ∈ ℕ)
304 simpr 484 . . . 4 ((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) → ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ)
305293, 302, 303, 304fvmptd 7023 . . 3 ((𝑁 ∈ ℕ ∧ ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1) ∈ ℂ) → (𝐽𝑁) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
306291, 305mpdan 687 . 2 (𝑁 ∈ ℕ → (𝐽𝑁) = ((((1 + (2 · 𝑁)) / 2) · (log‘((𝑁 + 1) / 𝑁))) − 1))
30752, 287, 3063eqtr4d 2787 1 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) = (𝐽𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  +crp 13034  cexp 14102  !cfa 14312  csqrt 15272  eceu 16098  logclog 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by:  stirlinglem9  46097
  Copyright terms: Public domain W3C validator