Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem10 Structured version   Visualization version   GIF version

Theorem stirlinglem10 40961
Description: A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole 𝐵 sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem10.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem10.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem10.4 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
stirlinglem10.5 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘))
Assertion
Ref Expression
stirlinglem10 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ≤ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
Distinct variable groups:   𝑘,𝑛   𝑛,𝐾   𝑛,𝐿   𝑘,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐾(𝑘)   𝐿(𝑘)

Proof of Theorem stirlinglem10
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11928 . 2 ℕ = (ℤ‘1)
2 1zzd 11660 . 2 (𝑁 ∈ ℕ → 1 ∈ ℤ)
3 stirlinglem10.1 . . 3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4 stirlinglem10.2 . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
5 eqid 2765 . . 3 (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
6 stirlinglem10.4 . . 3 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
73, 4, 5, 6stirlinglem9 40960 . 2 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
8 2cnd 11354 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℂ)
9 nncn 11287 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
108, 9mulcld 10318 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
11 1cnd 10292 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1210, 11addcld 10317 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
1312sqcld 13218 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ∈ ℂ)
14 0red 10301 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ ℝ)
15 1red 10298 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℝ)
16 2re 11350 . . . . . . . . . . 11 2 ∈ ℝ
1716a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℝ)
18 nnre 11286 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1917, 18remulcld 10328 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
2019, 15readdcld 10327 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
21 0lt1 10808 . . . . . . . . 9 0 < 1
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
23 2rp 12038 . . . . . . . . . . 11 2 ∈ ℝ+
2423a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
25 nnrp 12046 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
2624, 25rpmulcld 12091 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
2715, 26ltaddrp2d 12109 . . . . . . . 8 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
2814, 15, 20, 22, 27lttrd 10456 . . . . . . 7 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
2928gt0ne0d 10850 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
30 2z 11661 . . . . . . 7 2 ∈ ℤ
3130a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℤ)
3212, 29, 31expne0d 13226 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ≠ 0)
3313, 32reccld 11052 . . . 4 (𝑁 ∈ ℕ → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℂ)
3415renegcld 10715 . . . . . 6 (𝑁 ∈ ℕ → -1 ∈ ℝ)
3520resqcld 13247 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ∈ ℝ)
3635, 32rereccld 11110 . . . . . 6 (𝑁 ∈ ℕ → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℝ)
37 1re 10297 . . . . . . . 8 1 ∈ ℝ
38 lt0neg2 10793 . . . . . . . 8 (1 ∈ ℝ → (0 < 1 ↔ -1 < 0))
3937, 38ax-mp 5 . . . . . . 7 (0 < 1 ↔ -1 < 0)
4022, 39sylib 209 . . . . . 6 (𝑁 ∈ ℕ → -1 < 0)
4120, 29sqgt0d 13249 . . . . . . 7 (𝑁 ∈ ℕ → 0 < (((2 · 𝑁) + 1)↑2))
4235, 41recgt0d 11216 . . . . . 6 (𝑁 ∈ ℕ → 0 < (1 / (((2 · 𝑁) + 1)↑2)))
4334, 14, 36, 40, 42lttrd 10456 . . . . 5 (𝑁 ∈ ℕ → -1 < (1 / (((2 · 𝑁) + 1)↑2)))
44 2nn 11349 . . . . . . . 8 2 ∈ ℕ
4544a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℕ)
46 expgt1 13110 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℝ ∧ 2 ∈ ℕ ∧ 1 < ((2 · 𝑁) + 1)) → 1 < (((2 · 𝑁) + 1)↑2))
4720, 45, 27, 46syl3anc 1490 . . . . . 6 (𝑁 ∈ ℕ → 1 < (((2 · 𝑁) + 1)↑2))
4835, 41elrpd 12072 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ∈ ℝ+)
4948recgt1d 12089 . . . . . 6 (𝑁 ∈ ℕ → (1 < (((2 · 𝑁) + 1)↑2) ↔ (1 / (((2 · 𝑁) + 1)↑2)) < 1))
5047, 49mpbid 223 . . . . 5 (𝑁 ∈ ℕ → (1 / (((2 · 𝑁) + 1)↑2)) < 1)
5136, 15absltd 14467 . . . . 5 (𝑁 ∈ ℕ → ((abs‘(1 / (((2 · 𝑁) + 1)↑2))) < 1 ↔ (-1 < (1 / (((2 · 𝑁) + 1)↑2)) ∧ (1 / (((2 · 𝑁) + 1)↑2)) < 1)))
5243, 50, 51mpbir2and 704 . . . 4 (𝑁 ∈ ℕ → (abs‘(1 / (((2 · 𝑁) + 1)↑2))) < 1)
53 1nn0 11560 . . . . 5 1 ∈ ℕ0
5453a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
55 stirlinglem10.5 . . . . . 6 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘))
5655a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘)))
57 simpr 477 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑘 = 𝑗) → 𝑘 = 𝑗)
5857oveq2d 6862 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑘 = 𝑗) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑗))
59 elnnuz 11929 . . . . . . 7 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
6059biimpri 219 . . . . . 6 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
6160adantl 473 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
6233adantr 472 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℂ)
6361nnnn0d 11602 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ0)
6462, 63expcld 13220 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑗) ∈ ℂ)
6556, 58, 61, 64fvmptd 6481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → (𝐿𝑗) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑗))
6633, 52, 54, 65geolim2 14900 . . 3 (𝑁 ∈ ℕ → seq1( + , 𝐿) ⇝ (((1 / (((2 · 𝑁) + 1)↑2))↑1) / (1 − (1 / (((2 · 𝑁) + 1)↑2)))))
6733exp1d 13215 . . . . 5 (𝑁 ∈ ℕ → ((1 / (((2 · 𝑁) + 1)↑2))↑1) = (1 / (((2 · 𝑁) + 1)↑2)))
6813, 32dividd 11057 . . . . . . . 8 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) = 1)
6968eqcomd 2771 . . . . . . 7 (𝑁 ∈ ℕ → 1 = ((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)))
7069oveq1d 6861 . . . . . 6 (𝑁 ∈ ℕ → (1 − (1 / (((2 · 𝑁) + 1)↑2))) = (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) − (1 / (((2 · 𝑁) + 1)↑2))))
7148rpcnne0d 12084 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) ∈ ℂ ∧ (((2 · 𝑁) + 1)↑2) ≠ 0))
72 divsubdir 10979 . . . . . . 7 (((((2 · 𝑁) + 1)↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((((2 · 𝑁) + 1)↑2) ∈ ℂ ∧ (((2 · 𝑁) + 1)↑2) ≠ 0)) → (((((2 · 𝑁) + 1)↑2) − 1) / (((2 · 𝑁) + 1)↑2)) = (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) − (1 / (((2 · 𝑁) + 1)↑2))))
7313, 11, 71, 72syl3anc 1490 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) − 1) / (((2 · 𝑁) + 1)↑2)) = (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) − (1 / (((2 · 𝑁) + 1)↑2))))
74 ax-1cn 10251 . . . . . . . . . 10 1 ∈ ℂ
75 binom2 13191 . . . . . . . . . 10 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)))
7610, 74, 75sylancl 580 . . . . . . . . 9 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)))
7776oveq1d 6861 . . . . . . . 8 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) − 1) = (((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)) − 1))
788, 9sqmuld 13232 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
79 sq2 13172 . . . . . . . . . . . . . . 15 (2↑2) = 4
8079a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2↑2) = 4)
8180oveq1d 6861 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)))
8278, 81eqtrd 2799 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
8310mulid1d 10315 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((2 · 𝑁) · 1) = (2 · 𝑁))
8483oveq2d 6862 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · ((2 · 𝑁) · 1)) = (2 · (2 · 𝑁)))
858, 8, 9mulassd 10321 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
86 2t2e4 11446 . . . . . . . . . . . . . . 15 (2 · 2) = 4
8786a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2 · 2) = 4)
8887oveq1d 6861 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 2) · 𝑁) = (4 · 𝑁))
8984, 85, 883eqtr2d 2805 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · ((2 · 𝑁) · 1)) = (4 · 𝑁))
9082, 89oveq12d 6864 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
91 4cn 11362 . . . . . . . . . . . . 13 4 ∈ ℂ
9291a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 4 ∈ ℂ)
939sqcld 13218 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℂ)
9492, 93, 9adddid 10322 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (4 · ((𝑁↑2) + 𝑁)) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
959sqvald 13217 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁↑2) = (𝑁 · 𝑁))
969mulid1d 10315 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
9796eqcomd 2771 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 = (𝑁 · 1))
9895, 97oveq12d 6864 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁↑2) + 𝑁) = ((𝑁 · 𝑁) + (𝑁 · 1)))
999, 9, 11adddid 10322 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) = ((𝑁 · 𝑁) + (𝑁 · 1)))
10098, 99eqtr4d 2802 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁↑2) + 𝑁) = (𝑁 · (𝑁 + 1)))
101100oveq2d 6862 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (4 · ((𝑁↑2) + 𝑁)) = (4 · (𝑁 · (𝑁 + 1))))
10290, 94, 1013eqtr2d 2805 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) = (4 · (𝑁 · (𝑁 + 1))))
103 sq1 13170 . . . . . . . . . . 11 (1↑2) = 1
104103a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1↑2) = 1)
105102, 104oveq12d 6864 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)) = ((4 · (𝑁 · (𝑁 + 1))) + 1))
106105oveq1d 6861 . . . . . . . 8 (𝑁 ∈ ℕ → (((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)) − 1) = (((4 · (𝑁 · (𝑁 + 1))) + 1) − 1))
1079, 11addcld 10317 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
1089, 107mulcld 10318 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) ∈ ℂ)
10992, 108mulcld 10318 . . . . . . . . 9 (𝑁 ∈ ℕ → (4 · (𝑁 · (𝑁 + 1))) ∈ ℂ)
110109, 11pncand 10651 . . . . . . . 8 (𝑁 ∈ ℕ → (((4 · (𝑁 · (𝑁 + 1))) + 1) − 1) = (4 · (𝑁 · (𝑁 + 1))))
11177, 106, 1103eqtrd 2803 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) − 1) = (4 · (𝑁 · (𝑁 + 1))))
112111oveq1d 6861 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) − 1) / (((2 · 𝑁) + 1)↑2)) = ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2)))
11370, 73, 1123eqtr2d 2805 . . . . 5 (𝑁 ∈ ℕ → (1 − (1 / (((2 · 𝑁) + 1)↑2))) = ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2)))
11467, 113oveq12d 6864 . . . 4 (𝑁 ∈ ℕ → (((1 / (((2 · 𝑁) + 1)↑2))↑1) / (1 − (1 / (((2 · 𝑁) + 1)↑2)))) = ((1 / (((2 · 𝑁) + 1)↑2)) / ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2))))
115 4pos 11390 . . . . . . . . 9 0 < 4
116115a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 4)
117116gt0ne0d 10850 . . . . . . 7 (𝑁 ∈ ℕ → 4 ≠ 0)
118 nnne0 11314 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
11918, 15readdcld 10327 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
120 nngt0 11310 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
12118ltp1d 11212 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
12214, 18, 119, 120, 121lttrd 10456 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
123122gt0ne0d 10850 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
1249, 107, 118, 123mulne0d 10937 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) ≠ 0)
12592, 108, 117, 124mulne0d 10937 . . . . . 6 (𝑁 ∈ ℕ → (4 · (𝑁 · (𝑁 + 1))) ≠ 0)
12611, 13, 109, 13, 32, 32, 125divdivdivd 11106 . . . . 5 (𝑁 ∈ ℕ → ((1 / (((2 · 𝑁) + 1)↑2)) / ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2))) = ((1 · (((2 · 𝑁) + 1)↑2)) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))))
12711, 13mulcomd 10319 . . . . . 6 (𝑁 ∈ ℕ → (1 · (((2 · 𝑁) + 1)↑2)) = ((((2 · 𝑁) + 1)↑2) · 1))
128127oveq1d 6861 . . . . 5 (𝑁 ∈ ℕ → ((1 · (((2 · 𝑁) + 1)↑2)) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))) = (((((2 · 𝑁) + 1)↑2) · 1) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))))
12911mulid1d 10315 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 · 1) = 1)
130129eqcomd 2771 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 = (1 · 1))
131130oveq1d 6861 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / (4 · (𝑁 · (𝑁 + 1)))) = ((1 · 1) / (4 · (𝑁 · (𝑁 + 1)))))
13211, 92, 11, 108, 117, 124divmuldivd 11100 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))) = ((1 · 1) / (4 · (𝑁 · (𝑁 + 1)))))
133131, 132eqtr4d 2802 . . . . . . 7 (𝑁 ∈ ℕ → (1 / (4 · (𝑁 · (𝑁 + 1)))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
13468, 133oveq12d 6864 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) · (1 / (4 · (𝑁 · (𝑁 + 1))))) = (1 · ((1 / 4) · (1 / (𝑁 · (𝑁 + 1))))))
13513, 13, 11, 109, 32, 125divmuldivd 11100 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) · (1 / (4 · (𝑁 · (𝑁 + 1))))) = (((((2 · 𝑁) + 1)↑2) · 1) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))))
13692, 117reccld 11052 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 4) ∈ ℂ)
137108, 124reccld 11052 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / (𝑁 · (𝑁 + 1))) ∈ ℂ)
138136, 137mulcld 10318 . . . . . . 7 (𝑁 ∈ ℕ → ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))) ∈ ℂ)
139138mulid2d 10316 . . . . . 6 (𝑁 ∈ ℕ → (1 · ((1 / 4) · (1 / (𝑁 · (𝑁 + 1))))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
140134, 135, 1393eqtr3d 2807 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) · 1) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
141126, 128, 1403eqtrd 2803 . . . 4 (𝑁 ∈ ℕ → ((1 / (((2 · 𝑁) + 1)↑2)) / ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
142114, 141eqtrd 2799 . . 3 (𝑁 ∈ ℕ → (((1 / (((2 · 𝑁) + 1)↑2))↑1) / (1 − (1 / (((2 · 𝑁) + 1)↑2)))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
14366, 142breqtrd 4837 . 2 (𝑁 ∈ ℕ → seq1( + , 𝐿) ⇝ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
14459biimpi 207 . . . 4 (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ‘1))
145144adantl 473 . . 3 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
1466a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
147 oveq2 6854 . . . . . . . . . 10 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
148147oveq1d 6861 . . . . . . . . 9 (𝑘 = 𝑛 → ((2 · 𝑘) + 1) = ((2 · 𝑛) + 1))
149148oveq2d 6862 . . . . . . . 8 (𝑘 = 𝑛 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑛) + 1)))
150147oveq2d 6862 . . . . . . . 8 (𝑘 = 𝑛 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)))
151149, 150oveq12d 6864 . . . . . . 7 (𝑘 = 𝑛 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
152151adantl 473 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) ∧ 𝑘 = 𝑛) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
153 elfznn 12582 . . . . . . 7 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
154153adantl 473 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ)
155 2cnd 11354 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℂ)
156154nncnd 11296 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℂ)
157155, 156mulcld 10318 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℂ)
158 1cnd 10292 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℂ)
159157, 158addcld 10317 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ∈ ℂ)
160 0red 10301 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ∈ ℝ)
161 1red 10298 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
16216a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 2 ∈ ℝ)
163 nnre 11286 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
164162, 163remulcld 10328 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
165164, 161readdcld 10327 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
16621a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 1)
16723a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
168 nnrp 12046 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
169167, 168rpmulcld 12091 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
170161, 169ltaddrp2d 12109 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 < ((2 · 𝑛) + 1))
171160, 161, 165, 166, 170lttrd 10456 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 0 < ((2 · 𝑛) + 1))
172153, 171syl 17 . . . . . . . . . 10 (𝑛 ∈ (1...𝑗) → 0 < ((2 · 𝑛) + 1))
173172gt0ne0d 10850 . . . . . . . . 9 (𝑛 ∈ (1...𝑗) → ((2 · 𝑛) + 1) ≠ 0)
174173adantl 473 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ≠ 0)
175159, 174reccld 11052 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ)
1769adantr 472 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑁 ∈ ℂ)
177155, 176mulcld 10318 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑁) ∈ ℂ)
178177, 158addcld 10317 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ∈ ℂ)
17929adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ≠ 0)
180178, 179reccld 11052 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
181 2nn0 11561 . . . . . . . . . 10 2 ∈ ℕ0
182181a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℕ0)
183154nnnn0d 11602 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ0)
184182, 183nn0mulcld 11607 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℕ0)
185180, 184expcld 13220 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℂ)
186175, 185mulcld 10318 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ∈ ℂ)
187146, 152, 154, 186fvmptd 6481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
188187adantlr 706 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
189171gt0ne0d 10850 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
190165, 189rereccld 11110 . . . . . . 7 (𝑛 ∈ ℕ → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
191153, 190syl 17 . . . . . 6 (𝑛 ∈ (1...𝑗) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
192191adantl 473 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
19320, 29rereccld 11110 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
194193adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
195194, 184reexpcld 13237 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℝ)
196195adantlr 706 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℝ)
197192, 196remulcld 10328 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ∈ ℝ)
198188, 197eqeltrd 2844 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) ∈ ℝ)
199 readdcl 10276 . . . 4 ((𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑛 + 𝑖) ∈ ℝ)
200199adantl 473 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑛 + 𝑖) ∈ ℝ)
201145, 198, 200seqcl 13033 . 2 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐾)‘𝑗) ∈ ℝ)
20255a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘)))
203 oveq2 6854 . . . . . . 7 (𝑘 = 𝑛 → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
204203adantl 473 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) ∧ 𝑘 = 𝑛) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
20533adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℂ)
206205, 183expcld 13220 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) ∈ ℂ)
207202, 204, 154, 206fvmptd 6481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐿𝑛) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
20836adantr 472 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℝ)
209208, 183reexpcld 13237 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) ∈ ℝ)
210207, 209eqeltrd 2844 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐿𝑛) ∈ ℝ)
211210adantlr 706 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐿𝑛) ∈ ℝ)
212145, 211, 200seqcl 13033 . 2 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐿)‘𝑗) ∈ ℝ)
21330a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑗) → 2 ∈ ℤ)
214 elfzelz 12554 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℤ)
215213, 214zmulcld 11740 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑗) → (2 · 𝑛) ∈ ℤ)
216 1exp 13101 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℤ → (1↑(2 · 𝑛)) = 1)
217215, 216syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → (1↑(2 · 𝑛)) = 1)
218 1exp 13101 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
219214, 218syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → (1↑𝑛) = 1)
220217, 219eqtr4d 2802 . . . . . . . . . 10 (𝑛 ∈ (1...𝑗) → (1↑(2 · 𝑛)) = (1↑𝑛))
221220adantl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1↑(2 · 𝑛)) = (1↑𝑛))
222178, 183, 182expmuld 13223 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑(2 · 𝑛)) = ((((2 · 𝑁) + 1)↑2)↑𝑛))
223221, 222oveq12d 6864 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1↑(2 · 𝑛)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))) = ((1↑𝑛) / ((((2 · 𝑁) + 1)↑2)↑𝑛)))
224158, 178, 179, 184expdivd 13234 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) = ((1↑(2 · 𝑛)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))))
225178sqcld 13218 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑2) ∈ ℂ)
22630a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℤ)
227178, 179, 226expne0d 13226 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑2) ≠ 0)
228158, 225, 227, 183expdivd 13234 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) = ((1↑𝑛) / ((((2 · 𝑁) + 1)↑2)↑𝑛)))
229223, 224, 2283eqtr4d 2809 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
230229oveq2d 6862 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)))
231 1rp 12037 . . . . . . . . . . 11 1 ∈ ℝ+
232231a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℝ+)
23316a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℝ)
234154nnred 11295 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℝ)
235233, 234remulcld 10328 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℝ)
236182nn0ge0d 11605 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 2)
237183nn0ge0d 11605 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 𝑛)
238233, 234, 236, 237mulge0d 10862 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ (2 · 𝑛))
239235, 238ge0p1rpd 12105 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ∈ ℝ+)
240 1red 10298 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℝ)
241232rpge0d 12079 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 1)
242161, 165, 170ltled 10443 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ≤ ((2 · 𝑛) + 1))
243153, 242syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → 1 ≤ ((2 · 𝑛) + 1))
244243adantl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ≤ ((2 · 𝑛) + 1))
245232, 239, 240, 241, 244lediv2ad 12097 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ≤ (1 / 1))
246158div1d 11051 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / 1) = 1)
247245, 246breqtrd 4837 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ≤ 1)
248154, 190syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
24918adantr 472 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑁 ∈ ℝ)
250233, 249remulcld 10328 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑁) ∈ ℝ)
25114, 18, 120ltled 10443 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
252251adantr 472 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 𝑁)
253233, 249, 236, 252mulge0d 10862 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ (2 · 𝑁))
254250, 253ge0p1rpd 12105 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ∈ ℝ+)
255254, 226rpexpcld 13244 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑2) ∈ ℝ+)
256255rpreccld 12085 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℝ+)
257214adantl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℤ)
258256, 257rpexpcld 13244 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) ∈ ℝ+)
259248, 240, 258lemul1d 12118 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) ≤ 1 ↔ ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) ≤ (1 · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))))
260247, 259mpbid 223 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) ≤ (1 · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)))
261206mulid2d 10316 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
262260, 261breqtrd 4837 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) ≤ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
263230, 262eqbrtrd 4833 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ≤ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
264263, 187, 2073brtr4d 4843 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) ≤ (𝐿𝑛))
265264adantlr 706 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) ≤ (𝐿𝑛))
266145, 198, 211, 265serle 13068 . 2 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐾)‘𝑗) ≤ (seq1( + , 𝐿)‘𝑗))
2671, 2, 7, 143, 201, 212, 266climle 14669 1 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ≤ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4811  cmpt 4890  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198   < clt 10332  cle 10333  cmin 10524  -cneg 10525   / cdiv 10942  cn 11278  2c2 11331  4c4 11333  0cn0 11542  cz 11628  cuz 11891  +crp 12033  ...cfz 12538  seqcseq 13013  cexp 13072  !cfa 13269  csqrt 14272  abscabs 14273  cli 14514  eceu 15089  logclog 24606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-xnn0 11615  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ioc 12387  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-shft 14106  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-ef 15094  df-e 15095  df-sin 15096  df-cos 15097  df-tan 15098  df-pi 15099  df-dvds 15280  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-cmp 21484  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936  df-ulm 24436  df-log 24608  df-cxp 24609
This theorem is referenced by:  stirlinglem12  40963
  Copyright terms: Public domain W3C validator