Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem10 Structured version   Visualization version   GIF version

Theorem stirlinglem10 44314
Description: A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole 𝐵 sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem10.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem10.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem10.4 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
stirlinglem10.5 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘))
Assertion
Ref Expression
stirlinglem10 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ≤ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
Distinct variable groups:   𝑘,𝑛   𝑛,𝐾   𝑛,𝐿   𝑘,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐾(𝑘)   𝐿(𝑘)

Proof of Theorem stirlinglem10
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12806 . 2 ℕ = (ℤ‘1)
2 1zzd 12534 . 2 (𝑁 ∈ ℕ → 1 ∈ ℤ)
3 stirlinglem10.1 . . 3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4 stirlinglem10.2 . . 3 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
5 eqid 2736 . . 3 (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
6 stirlinglem10.4 . . 3 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
73, 4, 5, 6stirlinglem9 44313 . 2 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
8 2cnd 12231 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℂ)
9 nncn 12161 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
108, 9mulcld 11175 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
11 1cnd 11150 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1210, 11addcld 11174 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
1312sqcld 14049 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ∈ ℂ)
14 0red 11158 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ∈ ℝ)
15 1red 11156 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℝ)
16 2re 12227 . . . . . . . . . . 11 2 ∈ ℝ
1716a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℝ)
18 nnre 12160 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1917, 18remulcld 11185 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
2019, 15readdcld 11184 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
21 0lt1 11677 . . . . . . . . 9 0 < 1
2221a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
23 2rp 12920 . . . . . . . . . . 11 2 ∈ ℝ+
2423a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
25 nnrp 12926 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
2624, 25rpmulcld 12973 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
2715, 26ltaddrp2d 12991 . . . . . . . 8 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
2814, 15, 20, 22, 27lttrd 11316 . . . . . . 7 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
2928gt0ne0d 11719 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
30 2z 12535 . . . . . . 7 2 ∈ ℤ
3130a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ∈ ℤ)
3212, 29, 31expne0d 14057 . . . . 5 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ≠ 0)
3313, 32reccld 11924 . . . 4 (𝑁 ∈ ℕ → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℂ)
3415renegcld 11582 . . . . . 6 (𝑁 ∈ ℕ → -1 ∈ ℝ)
3520resqcld 14030 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ∈ ℝ)
3635, 32rereccld 11982 . . . . . 6 (𝑁 ∈ ℕ → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℝ)
37 1re 11155 . . . . . . . 8 1 ∈ ℝ
38 lt0neg2 11662 . . . . . . . 8 (1 ∈ ℝ → (0 < 1 ↔ -1 < 0))
3937, 38ax-mp 5 . . . . . . 7 (0 < 1 ↔ -1 < 0)
4022, 39sylib 217 . . . . . 6 (𝑁 ∈ ℕ → -1 < 0)
4120, 29sqgt0d 14153 . . . . . . 7 (𝑁 ∈ ℕ → 0 < (((2 · 𝑁) + 1)↑2))
4235, 41recgt0d 12089 . . . . . 6 (𝑁 ∈ ℕ → 0 < (1 / (((2 · 𝑁) + 1)↑2)))
4334, 14, 36, 40, 42lttrd 11316 . . . . 5 (𝑁 ∈ ℕ → -1 < (1 / (((2 · 𝑁) + 1)↑2)))
44 2nn 12226 . . . . . . . 8 2 ∈ ℕ
4544a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℕ)
46 expgt1 14006 . . . . . . 7 ((((2 · 𝑁) + 1) ∈ ℝ ∧ 2 ∈ ℕ ∧ 1 < ((2 · 𝑁) + 1)) → 1 < (((2 · 𝑁) + 1)↑2))
4720, 45, 27, 46syl3anc 1371 . . . . . 6 (𝑁 ∈ ℕ → 1 < (((2 · 𝑁) + 1)↑2))
4835, 41elrpd 12954 . . . . . . 7 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) ∈ ℝ+)
4948recgt1d 12971 . . . . . 6 (𝑁 ∈ ℕ → (1 < (((2 · 𝑁) + 1)↑2) ↔ (1 / (((2 · 𝑁) + 1)↑2)) < 1))
5047, 49mpbid 231 . . . . 5 (𝑁 ∈ ℕ → (1 / (((2 · 𝑁) + 1)↑2)) < 1)
5136, 15absltd 15314 . . . . 5 (𝑁 ∈ ℕ → ((abs‘(1 / (((2 · 𝑁) + 1)↑2))) < 1 ↔ (-1 < (1 / (((2 · 𝑁) + 1)↑2)) ∧ (1 / (((2 · 𝑁) + 1)↑2)) < 1)))
5243, 50, 51mpbir2and 711 . . . 4 (𝑁 ∈ ℕ → (abs‘(1 / (((2 · 𝑁) + 1)↑2))) < 1)
53 1nn0 12429 . . . . 5 1 ∈ ℕ0
5453a1i 11 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
55 stirlinglem10.5 . . . . . 6 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘))
5655a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → 𝐿 = (𝑘 ∈ ℕ ↦ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘)))
57 simpr 485 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑘 = 𝑗) → 𝑘 = 𝑗)
5857oveq2d 7373 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) ∧ 𝑘 = 𝑗) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑗))
59 elnnuz 12807 . . . . . . 7 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
6059biimpri 227 . . . . . 6 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
6160adantl 482 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
6233adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℂ)
6361nnnn0d 12473 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ0)
6462, 63expcld 14051 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑗) ∈ ℂ)
6556, 58, 61, 64fvmptd 6955 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘1)) → (𝐿𝑗) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑗))
6633, 52, 54, 65geolim2 15756 . . 3 (𝑁 ∈ ℕ → seq1( + , 𝐿) ⇝ (((1 / (((2 · 𝑁) + 1)↑2))↑1) / (1 − (1 / (((2 · 𝑁) + 1)↑2)))))
6733exp1d 14046 . . . . 5 (𝑁 ∈ ℕ → ((1 / (((2 · 𝑁) + 1)↑2))↑1) = (1 / (((2 · 𝑁) + 1)↑2)))
6813, 32dividd 11929 . . . . . . . 8 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) = 1)
6968eqcomd 2742 . . . . . . 7 (𝑁 ∈ ℕ → 1 = ((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)))
7069oveq1d 7372 . . . . . 6 (𝑁 ∈ ℕ → (1 − (1 / (((2 · 𝑁) + 1)↑2))) = (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) − (1 / (((2 · 𝑁) + 1)↑2))))
7148rpcnne0d 12966 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) ∈ ℂ ∧ (((2 · 𝑁) + 1)↑2) ≠ 0))
72 divsubdir 11849 . . . . . . 7 (((((2 · 𝑁) + 1)↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((((2 · 𝑁) + 1)↑2) ∈ ℂ ∧ (((2 · 𝑁) + 1)↑2) ≠ 0)) → (((((2 · 𝑁) + 1)↑2) − 1) / (((2 · 𝑁) + 1)↑2)) = (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) − (1 / (((2 · 𝑁) + 1)↑2))))
7313, 11, 71, 72syl3anc 1371 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) − 1) / (((2 · 𝑁) + 1)↑2)) = (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) − (1 / (((2 · 𝑁) + 1)↑2))))
74 ax-1cn 11109 . . . . . . . . . 10 1 ∈ ℂ
75 binom2 14121 . . . . . . . . . 10 (((2 · 𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)))
7610, 74, 75sylancl 586 . . . . . . . . 9 (𝑁 ∈ ℕ → (((2 · 𝑁) + 1)↑2) = ((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)))
7776oveq1d 7372 . . . . . . . 8 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) − 1) = (((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)) − 1))
788, 9sqmuld 14063 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 𝑁)↑2) = ((2↑2) · (𝑁↑2)))
79 sq2 14101 . . . . . . . . . . . . . . 15 (2↑2) = 4
8079a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2↑2) = 4)
8180oveq1d 7372 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2↑2) · (𝑁↑2)) = (4 · (𝑁↑2)))
8278, 81eqtrd 2776 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2 · 𝑁)↑2) = (4 · (𝑁↑2)))
8310mulid1d 11172 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((2 · 𝑁) · 1) = (2 · 𝑁))
8483oveq2d 7373 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · ((2 · 𝑁) · 1)) = (2 · (2 · 𝑁)))
858, 8, 9mulassd 11178 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 2) · 𝑁) = (2 · (2 · 𝑁)))
86 2t2e4 12317 . . . . . . . . . . . . . . 15 (2 · 2) = 4
8786a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2 · 2) = 4)
8887oveq1d 7372 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2 · 2) · 𝑁) = (4 · 𝑁))
8984, 85, 883eqtr2d 2782 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · ((2 · 𝑁) · 1)) = (4 · 𝑁))
9082, 89oveq12d 7375 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
91 4cn 12238 . . . . . . . . . . . . 13 4 ∈ ℂ
9291a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 4 ∈ ℂ)
939sqcld 14049 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℂ)
9492, 93, 9adddid 11179 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (4 · ((𝑁↑2) + 𝑁)) = ((4 · (𝑁↑2)) + (4 · 𝑁)))
959sqvald 14048 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁↑2) = (𝑁 · 𝑁))
969mulid1d 11172 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 · 1) = 𝑁)
9796eqcomd 2742 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 = (𝑁 · 1))
9895, 97oveq12d 7375 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑁↑2) + 𝑁) = ((𝑁 · 𝑁) + (𝑁 · 1)))
999, 9, 11adddid 11179 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) = ((𝑁 · 𝑁) + (𝑁 · 1)))
10098, 99eqtr4d 2779 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁↑2) + 𝑁) = (𝑁 · (𝑁 + 1)))
101100oveq2d 7373 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (4 · ((𝑁↑2) + 𝑁)) = (4 · (𝑁 · (𝑁 + 1))))
10290, 94, 1013eqtr2d 2782 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) = (4 · (𝑁 · (𝑁 + 1))))
103 sq1 14099 . . . . . . . . . . 11 (1↑2) = 1
104103a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1↑2) = 1)
105102, 104oveq12d 7375 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)) = ((4 · (𝑁 · (𝑁 + 1))) + 1))
106105oveq1d 7372 . . . . . . . 8 (𝑁 ∈ ℕ → (((((2 · 𝑁)↑2) + (2 · ((2 · 𝑁) · 1))) + (1↑2)) − 1) = (((4 · (𝑁 · (𝑁 + 1))) + 1) − 1))
1079, 11addcld 11174 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
1089, 107mulcld 11175 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) ∈ ℂ)
10992, 108mulcld 11175 . . . . . . . . 9 (𝑁 ∈ ℕ → (4 · (𝑁 · (𝑁 + 1))) ∈ ℂ)
110109, 11pncand 11513 . . . . . . . 8 (𝑁 ∈ ℕ → (((4 · (𝑁 · (𝑁 + 1))) + 1) − 1) = (4 · (𝑁 · (𝑁 + 1))))
11177, 106, 1103eqtrd 2780 . . . . . . 7 (𝑁 ∈ ℕ → ((((2 · 𝑁) + 1)↑2) − 1) = (4 · (𝑁 · (𝑁 + 1))))
112111oveq1d 7372 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) − 1) / (((2 · 𝑁) + 1)↑2)) = ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2)))
11370, 73, 1123eqtr2d 2782 . . . . 5 (𝑁 ∈ ℕ → (1 − (1 / (((2 · 𝑁) + 1)↑2))) = ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2)))
11467, 113oveq12d 7375 . . . 4 (𝑁 ∈ ℕ → (((1 / (((2 · 𝑁) + 1)↑2))↑1) / (1 − (1 / (((2 · 𝑁) + 1)↑2)))) = ((1 / (((2 · 𝑁) + 1)↑2)) / ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2))))
115 4pos 12260 . . . . . . . . 9 0 < 4
116115a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 4)
117116gt0ne0d 11719 . . . . . . 7 (𝑁 ∈ ℕ → 4 ≠ 0)
118 nnne0 12187 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
11918, 15readdcld 11184 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
120 nngt0 12184 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
12118ltp1d 12085 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 1))
12214, 18, 119, 120, 121lttrd 11316 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
123122gt0ne0d 11719 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ≠ 0)
1249, 107, 118, 123mulne0d 11807 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) ≠ 0)
12592, 108, 117, 124mulne0d 11807 . . . . . 6 (𝑁 ∈ ℕ → (4 · (𝑁 · (𝑁 + 1))) ≠ 0)
12611, 13, 109, 13, 32, 32, 125divdivdivd 11978 . . . . 5 (𝑁 ∈ ℕ → ((1 / (((2 · 𝑁) + 1)↑2)) / ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2))) = ((1 · (((2 · 𝑁) + 1)↑2)) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))))
12711, 13mulcomd 11176 . . . . . 6 (𝑁 ∈ ℕ → (1 · (((2 · 𝑁) + 1)↑2)) = ((((2 · 𝑁) + 1)↑2) · 1))
128127oveq1d 7372 . . . . 5 (𝑁 ∈ ℕ → ((1 · (((2 · 𝑁) + 1)↑2)) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))) = (((((2 · 𝑁) + 1)↑2) · 1) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))))
12911mulid1d 11172 . . . . . . . . . 10 (𝑁 ∈ ℕ → (1 · 1) = 1)
130129eqcomd 2742 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 = (1 · 1))
131130oveq1d 7372 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / (4 · (𝑁 · (𝑁 + 1)))) = ((1 · 1) / (4 · (𝑁 · (𝑁 + 1)))))
13211, 92, 11, 108, 117, 124divmuldivd 11972 . . . . . . . 8 (𝑁 ∈ ℕ → ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))) = ((1 · 1) / (4 · (𝑁 · (𝑁 + 1)))))
133131, 132eqtr4d 2779 . . . . . . 7 (𝑁 ∈ ℕ → (1 / (4 · (𝑁 · (𝑁 + 1)))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
13468, 133oveq12d 7375 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) · (1 / (4 · (𝑁 · (𝑁 + 1))))) = (1 · ((1 / 4) · (1 / (𝑁 · (𝑁 + 1))))))
13513, 13, 11, 109, 32, 125divmuldivd 11972 . . . . . 6 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) / (((2 · 𝑁) + 1)↑2)) · (1 / (4 · (𝑁 · (𝑁 + 1))))) = (((((2 · 𝑁) + 1)↑2) · 1) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))))
13692, 117reccld 11924 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / 4) ∈ ℂ)
137108, 124reccld 11924 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / (𝑁 · (𝑁 + 1))) ∈ ℂ)
138136, 137mulcld 11175 . . . . . . 7 (𝑁 ∈ ℕ → ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))) ∈ ℂ)
139138mulid2d 11173 . . . . . 6 (𝑁 ∈ ℕ → (1 · ((1 / 4) · (1 / (𝑁 · (𝑁 + 1))))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
140134, 135, 1393eqtr3d 2784 . . . . 5 (𝑁 ∈ ℕ → (((((2 · 𝑁) + 1)↑2) · 1) / ((((2 · 𝑁) + 1)↑2) · (4 · (𝑁 · (𝑁 + 1))))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
141126, 128, 1403eqtrd 2780 . . . 4 (𝑁 ∈ ℕ → ((1 / (((2 · 𝑁) + 1)↑2)) / ((4 · (𝑁 · (𝑁 + 1))) / (((2 · 𝑁) + 1)↑2))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
142114, 141eqtrd 2776 . . 3 (𝑁 ∈ ℕ → (((1 / (((2 · 𝑁) + 1)↑2))↑1) / (1 − (1 / (((2 · 𝑁) + 1)↑2)))) = ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
14366, 142breqtrd 5131 . 2 (𝑁 ∈ ℕ → seq1( + , 𝐿) ⇝ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
14459biimpi 215 . . . 4 (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ‘1))
145144adantl 482 . . 3 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
146 oveq2 7365 . . . . . . . . 9 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
147146oveq1d 7372 . . . . . . . 8 (𝑘 = 𝑛 → ((2 · 𝑘) + 1) = ((2 · 𝑛) + 1))
148147oveq2d 7373 . . . . . . 7 (𝑘 = 𝑛 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑛) + 1)))
149146oveq2d 7373 . . . . . . 7 (𝑘 = 𝑛 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)))
150148, 149oveq12d 7375 . . . . . 6 (𝑘 = 𝑛 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
151 elfznn 13470 . . . . . . 7 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℕ)
152151adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ)
153 2cnd 12231 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℂ)
154152nncnd 12169 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℂ)
155153, 154mulcld 11175 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℂ)
156 1cnd 11150 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℂ)
157155, 156addcld 11174 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ∈ ℂ)
158 0red 11158 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ∈ ℝ)
159 1red 11156 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ∈ ℝ)
16016a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 2 ∈ ℝ)
161 nnre 12160 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
162160, 161remulcld 11185 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
163162, 159readdcld 11184 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
16421a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 1)
16523a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
166 nnrp 12926 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
167165, 166rpmulcld 12973 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
168159, 167ltaddrp2d 12991 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 < ((2 · 𝑛) + 1))
169158, 159, 163, 164, 168lttrd 11316 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 0 < ((2 · 𝑛) + 1))
170151, 169syl 17 . . . . . . . . . 10 (𝑛 ∈ (1...𝑗) → 0 < ((2 · 𝑛) + 1))
171170gt0ne0d 11719 . . . . . . . . 9 (𝑛 ∈ (1...𝑗) → ((2 · 𝑛) + 1) ≠ 0)
172171adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ≠ 0)
173157, 172reccld 11924 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ)
1749adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑁 ∈ ℂ)
175153, 174mulcld 11175 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑁) ∈ ℂ)
176175, 156addcld 11174 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ∈ ℂ)
17729adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ≠ 0)
178176, 177reccld 11924 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
179 2nn0 12430 . . . . . . . . . 10 2 ∈ ℕ0
180179a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℕ0)
181152nnnn0d 12473 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℕ0)
182180, 181nn0mulcld 12478 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℕ0)
183178, 182expcld 14051 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℂ)
184173, 183mulcld 11175 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ∈ ℂ)
1856, 150, 152, 184fvmptd3 6971 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
186185adantlr 713 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) = ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))))
187169gt0ne0d 11719 . . . . . . . 8 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
188163, 187rereccld 11982 . . . . . . 7 (𝑛 ∈ ℕ → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
189151, 188syl 17 . . . . . 6 (𝑛 ∈ (1...𝑗) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
190189adantl 482 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
19120, 29rereccld 11982 . . . . . . . 8 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
192191adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
193192, 182reexpcld 14068 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℝ)
194193adantlr 713 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) ∈ ℝ)
195190, 194remulcld 11185 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ∈ ℝ)
196186, 195eqeltrd 2838 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) ∈ ℝ)
197 readdcl 11134 . . . 4 ((𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑛 + 𝑖) ∈ ℝ)
198197adantl 482 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ (𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑛 + 𝑖) ∈ ℝ)
199145, 196, 198seqcl 13928 . 2 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐾)‘𝑗) ∈ ℝ)
200 oveq2 7365 . . . . . 6 (𝑘 = 𝑛 → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑘) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
20133adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℂ)
202201, 181expcld 14051 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) ∈ ℂ)
20355, 200, 152, 202fvmptd3 6971 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐿𝑛) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
20436adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℝ)
205204, 181reexpcld 14068 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) ∈ ℝ)
206203, 205eqeltrd 2838 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐿𝑛) ∈ ℝ)
207206adantlr 713 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐿𝑛) ∈ ℝ)
208145, 207, 198seqcl 13928 . 2 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐿)‘𝑗) ∈ ℝ)
20930a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑗) → 2 ∈ ℤ)
210 elfzelz 13441 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑗) → 𝑛 ∈ ℤ)
211209, 210zmulcld 12613 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑗) → (2 · 𝑛) ∈ ℤ)
212 1exp 13997 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℤ → (1↑(2 · 𝑛)) = 1)
213211, 212syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → (1↑(2 · 𝑛)) = 1)
214 1exp 13997 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
215210, 214syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → (1↑𝑛) = 1)
216213, 215eqtr4d 2779 . . . . . . . . . 10 (𝑛 ∈ (1...𝑗) → (1↑(2 · 𝑛)) = (1↑𝑛))
217216adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1↑(2 · 𝑛)) = (1↑𝑛))
218176, 181, 180expmuld 14054 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑(2 · 𝑛)) = ((((2 · 𝑁) + 1)↑2)↑𝑛))
219217, 218oveq12d 7375 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1↑(2 · 𝑛)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))) = ((1↑𝑛) / ((((2 · 𝑁) + 1)↑2)↑𝑛)))
220156, 176, 177, 182expdivd 14065 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) = ((1↑(2 · 𝑛)) / (((2 · 𝑁) + 1)↑(2 · 𝑛))))
221176sqcld 14049 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑2) ∈ ℂ)
22230a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℤ)
223176, 177, 222expne0d 14057 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑2) ≠ 0)
224156, 221, 223, 181expdivd 14065 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) = ((1↑𝑛) / ((((2 · 𝑁) + 1)↑2)↑𝑛)))
225219, 220, 2243eqtr4d 2786 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛)) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
226225oveq2d 7373 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) = ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)))
227 1rp 12919 . . . . . . . . . . 11 1 ∈ ℝ+
228227a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℝ+)
22916a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 2 ∈ ℝ)
230152nnred 12168 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℝ)
231229, 230remulcld 11185 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑛) ∈ ℝ)
232180nn0ge0d 12476 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 2)
233181nn0ge0d 12476 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 𝑛)
234229, 230, 232, 233mulge0d 11732 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ (2 · 𝑛))
235231, 234ge0p1rpd 12987 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑛) + 1) ∈ ℝ+)
236 1red 11156 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ∈ ℝ)
237228rpge0d 12961 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 1)
238159, 163, 168ltled 11303 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 1 ≤ ((2 · 𝑛) + 1))
239151, 238syl 17 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑗) → 1 ≤ ((2 · 𝑛) + 1))
240239adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 1 ≤ ((2 · 𝑛) + 1))
241228, 235, 236, 237, 240lediv2ad 12979 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ≤ (1 / 1))
242156div1d 11923 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / 1) = 1)
243241, 242breqtrd 5131 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ≤ 1)
244152, 188syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
24518adantr 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑁 ∈ ℝ)
246229, 245remulcld 11185 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (2 · 𝑁) ∈ ℝ)
24714, 18, 120ltled 11303 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
248247adantr 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ 𝑁)
249229, 245, 232, 248mulge0d 11732 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 0 ≤ (2 · 𝑁))
250246, 249ge0p1rpd 12987 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((2 · 𝑁) + 1) ∈ ℝ+)
251250, 222rpexpcld 14150 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (((2 · 𝑁) + 1)↑2) ∈ ℝ+)
252251rpreccld 12967 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 / (((2 · 𝑁) + 1)↑2)) ∈ ℝ+)
253210adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → 𝑛 ∈ ℤ)
254252, 253rpexpcld 14150 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛) ∈ ℝ+)
255244, 236, 254lemul1d 13000 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) ≤ 1 ↔ ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) ≤ (1 · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))))
256243, 255mpbid 231 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) ≤ (1 · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)))
257202mulid2d 11173 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (1 · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) = ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
258256, 257breqtrd 5131 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛)) ≤ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
259226, 258eqbrtrd 5127 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → ((1 / ((2 · 𝑛) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑛))) ≤ ((1 / (((2 · 𝑁) + 1)↑2))↑𝑛))
260259, 185, 2033brtr4d 5137 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) ≤ (𝐿𝑛))
261260adantlr 713 . . 3 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (1...𝑗)) → (𝐾𝑛) ≤ (𝐿𝑛))
262145, 196, 207, 261serle 13963 . 2 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (seq1( + , 𝐾)‘𝑗) ≤ (seq1( + , 𝐿)‘𝑗))
2631, 2, 7, 143, 199, 208, 262climle 15522 1 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ≤ ((1 / 4) · (1 / (𝑁 · (𝑁 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  seqcseq 13906  cexp 13967  !cfa 14173  csqrt 15118  abscabs 15119  cli 15366  eceu 15945  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-cxp 25913
This theorem is referenced by:  stirlinglem12  44316
  Copyright terms: Public domain W3C validator