Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dpjghm2 | Structured version Visualization version GIF version |
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
dpjlid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
dpjghm2 | ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpjfval.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dpjfval.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | dpjfval.p | . . 3 ⊢ 𝑃 = (𝐺dProj𝑆) | |
4 | dpjlid.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
5 | 1, 2, 3, 4 | dpjghm 19694 | . 2 ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺)) |
6 | 1, 2 | dprdf2 19638 | . . . 4 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
7 | 6, 4 | ffvelcdmd 6982 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (SubGrp‘𝐺)) |
8 | 1, 2, 3, 4 | dpjf 19688 | . . . 4 ⊢ (𝜑 → (𝑃‘𝑋):(𝐺 DProd 𝑆)⟶(𝑆‘𝑋)) |
9 | 8 | frnd 6626 | . . 3 ⊢ (𝜑 → ran (𝑃‘𝑋) ⊆ (𝑆‘𝑋)) |
10 | eqid 2733 | . . . 4 ⊢ (𝐺 ↾s (𝑆‘𝑋)) = (𝐺 ↾s (𝑆‘𝑋)) | |
11 | 10 | resghm2b 18880 | . . 3 ⊢ (((𝑆‘𝑋) ∈ (SubGrp‘𝐺) ∧ ran (𝑃‘𝑋) ⊆ (𝑆‘𝑋)) → ((𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺) ↔ (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋))))) |
12 | 7, 9, 11 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom 𝐺) ↔ (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋))))) |
13 | 5, 12 | mpbid 231 | 1 ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((𝐺 ↾s (𝐺 DProd 𝑆)) GrpHom (𝐺 ↾s (𝑆‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1537 ∈ wcel 2101 ⊆ wss 3889 class class class wbr 5077 dom cdm 5591 ran crn 5592 ‘cfv 6447 (class class class)co 7295 ↾s cress 16969 SubGrpcsubg 18777 GrpHom cghm 18859 DProd cdprd 19624 dProjcdpj 19625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-tpos 8062 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-oi 9297 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-fz 13268 df-fzo 13411 df-seq 13750 df-hash 14073 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-0g 17180 df-gsum 17181 df-mre 17323 df-mrc 17324 df-acs 17326 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-mhm 18458 df-submnd 18459 df-grp 18608 df-minusg 18609 df-sbg 18610 df-mulg 18729 df-subg 18780 df-ghm 18860 df-gim 18903 df-cntz 18951 df-oppg 18978 df-lsm 19269 df-pj1 19270 df-cmn 19416 df-dprd 19626 df-dpj 19627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |