MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dpjghm2 Structured version   Visualization version   GIF version

Theorem dpjghm2 19695
Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dpjfval.1 (𝜑𝐺dom DProd 𝑆)
dpjfval.2 (𝜑 → dom 𝑆 = 𝐼)
dpjfval.p 𝑃 = (𝐺dProj𝑆)
dpjlid.3 (𝜑𝑋𝐼)
Assertion
Ref Expression
dpjghm2 (𝜑 → (𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom (𝐺s (𝑆𝑋))))

Proof of Theorem dpjghm2
StepHypRef Expression
1 dpjfval.1 . . 3 (𝜑𝐺dom DProd 𝑆)
2 dpjfval.2 . . 3 (𝜑 → dom 𝑆 = 𝐼)
3 dpjfval.p . . 3 𝑃 = (𝐺dProj𝑆)
4 dpjlid.3 . . 3 (𝜑𝑋𝐼)
51, 2, 3, 4dpjghm 19694 . 2 (𝜑 → (𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom 𝐺))
61, 2dprdf2 19638 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
76, 4ffvelcdmd 6982 . . 3 (𝜑 → (𝑆𝑋) ∈ (SubGrp‘𝐺))
81, 2, 3, 4dpjf 19688 . . . 4 (𝜑 → (𝑃𝑋):(𝐺 DProd 𝑆)⟶(𝑆𝑋))
98frnd 6626 . . 3 (𝜑 → ran (𝑃𝑋) ⊆ (𝑆𝑋))
10 eqid 2733 . . . 4 (𝐺s (𝑆𝑋)) = (𝐺s (𝑆𝑋))
1110resghm2b 18880 . . 3 (((𝑆𝑋) ∈ (SubGrp‘𝐺) ∧ ran (𝑃𝑋) ⊆ (𝑆𝑋)) → ((𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom 𝐺) ↔ (𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom (𝐺s (𝑆𝑋)))))
127, 9, 11syl2anc 583 . 2 (𝜑 → ((𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom 𝐺) ↔ (𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom (𝐺s (𝑆𝑋)))))
135, 12mpbid 231 1 (𝜑 → (𝑃𝑋) ∈ ((𝐺s (𝐺 DProd 𝑆)) GrpHom (𝐺s (𝑆𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1537  wcel 2101  wss 3889   class class class wbr 5077  dom cdm 5591  ran crn 5592  cfv 6447  (class class class)co 7295  s cress 16969  SubGrpcsubg 18777   GrpHom cghm 18859   DProd cdprd 19624  dProjcdpj 19625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-of 7553  df-om 7733  df-1st 7851  df-2nd 7852  df-supp 7998  df-tpos 8062  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-map 8637  df-ixp 8706  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-fsupp 9157  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-n0 12262  df-z 12348  df-uz 12611  df-fz 13268  df-fzo 13411  df-seq 13750  df-hash 14073  df-sets 16893  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970  df-plusg 17003  df-0g 17180  df-gsum 17181  df-mre 17323  df-mrc 17324  df-acs 17326  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-mhm 18458  df-submnd 18459  df-grp 18608  df-minusg 18609  df-sbg 18610  df-mulg 18729  df-subg 18780  df-ghm 18860  df-gim 18903  df-cntz 18951  df-oppg 18978  df-lsm 19269  df-pj1 19270  df-cmn 19416  df-dprd 19626  df-dpj 19627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator