| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzo0subge1 | Structured version Visualization version GIF version | ||
| Description: The difference of the upper bound of a half-open range of nonnegative integers and an element of this range is greater than or equal to 1. (Contributed by AV, 1-Sep-2025.) (Proof shortened by SN, 18-Sep-2025.) |
| Ref | Expression |
|---|---|
| elfzo0subge1 | ⊢ (𝐴 ∈ (0..^𝐵) → 1 ≤ (𝐵 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz 13666 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℤ) | |
| 2 | 1 | zred 12690 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℝ) |
| 3 | elfzoel2 13665 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℤ) | |
| 4 | 3 | zred 12690 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℝ) |
| 5 | 1red 11229 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → 1 ∈ ℝ) | |
| 6 | elfzolem1 13711 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ≤ (𝐵 − 1)) | |
| 7 | 2, 4, 5, 6 | lesubd 11834 | 1 ⊢ (𝐴 ∈ (0..^𝐵) → 1 ≤ (𝐵 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5117 (class class class)co 7400 0cc0 11122 1c1 11123 ≤ cle 11263 − cmin 11459 ..^cfzo 13661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-z 12582 df-uz 12846 df-fz 13515 df-fzo 13662 |
| This theorem is referenced by: gpgedgvtx1 47973 |
| Copyright terms: Public domain | W3C validator |