MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elons2d Structured version   Visualization version   GIF version

Theorem elons2d 27925
Description: The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025.)
Hypotheses
Ref Expression
elons2d.1 (𝜑𝐴𝑉)
elons2d.2 (𝜑𝐴 No )
elons2d.3 (𝜑𝑋 = (𝐴 |s ∅))
Assertion
Ref Expression
elons2d (𝜑𝑋 ∈ Ons)

Proof of Theorem elons2d
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elons2d.1 . . . 4 (𝜑𝐴𝑉)
2 elons2d.2 . . . 4 (𝜑𝐴 No )
31, 2elpwd 4607 . . 3 (𝜑𝐴 ∈ 𝒫 No )
4 elons2d.3 . . 3 (𝜑𝑋 = (𝐴 |s ∅))
5 oveq1 7418 . . . . 5 (𝑎 = 𝐴 → (𝑎 |s ∅) = (𝐴 |s ∅))
65eqeq2d 2741 . . . 4 (𝑎 = 𝐴 → (𝑋 = (𝑎 |s ∅) ↔ 𝑋 = (𝐴 |s ∅)))
76rspcev 3611 . . 3 ((𝐴 ∈ 𝒫 No 𝑋 = (𝐴 |s ∅)) → ∃𝑎 ∈ 𝒫 No 𝑋 = (𝑎 |s ∅))
83, 4, 7syl2anc 582 . 2 (𝜑 → ∃𝑎 ∈ 𝒫 No 𝑋 = (𝑎 |s ∅))
9 elons2 27924 . 2 (𝑋 ∈ Ons ↔ ∃𝑎 ∈ 𝒫 No 𝑋 = (𝑎 |s ∅))
108, 9sylibr 233 1 (𝜑𝑋 ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wrex 3068  wss 3947  c0 4321  𝒫 cpw 4601  (class class class)co 7411   No csur 27379   |s cscut 27520  Onscons 27917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-1o 8468  df-2o 8469  df-no 27382  df-slt 27383  df-bday 27384  df-sle 27484  df-sslt 27519  df-scut 27521  df-made 27579  df-old 27580  df-left 27582  df-right 27583  df-ons 27918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator