| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elons2d | Structured version Visualization version GIF version | ||
| Description: The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025.) |
| Ref | Expression |
|---|---|
| elons2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elons2d.2 | ⊢ (𝜑 → 𝐴 ⊆ No ) |
| elons2d.3 | ⊢ (𝜑 → 𝑋 = (𝐴 |s ∅)) |
| Ref | Expression |
|---|---|
| elons2d | ⊢ (𝜑 → 𝑋 ∈ Ons) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elons2d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | elons2d.2 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ No ) | |
| 3 | 1, 2 | elpwd 4586 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 No ) |
| 4 | elons2d.3 | . . 3 ⊢ (𝜑 → 𝑋 = (𝐴 |s ∅)) | |
| 5 | oveq1 7420 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 |s ∅) = (𝐴 |s ∅)) | |
| 6 | 5 | eqeq2d 2745 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑋 = (𝑎 |s ∅) ↔ 𝑋 = (𝐴 |s ∅))) |
| 7 | 6 | rspcev 3605 | . . 3 ⊢ ((𝐴 ∈ 𝒫 No ∧ 𝑋 = (𝐴 |s ∅)) → ∃𝑎 ∈ 𝒫 No 𝑋 = (𝑎 |s ∅)) |
| 8 | 3, 4, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝒫 No 𝑋 = (𝑎 |s ∅)) |
| 9 | elons2 28217 | . 2 ⊢ (𝑋 ∈ Ons ↔ ∃𝑎 ∈ 𝒫 No 𝑋 = (𝑎 |s ∅)) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ (𝜑 → 𝑋 ∈ Ons) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 (class class class)co 7413 No csur 27620 |s cscut 27763 Onscons 28210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-2o 8489 df-no 27623 df-slt 27624 df-bday 27625 df-sle 27726 df-sslt 27762 df-scut 27764 df-made 27822 df-old 27823 df-left 27825 df-right 27826 df-ons 28211 |
| This theorem is referenced by: onaddscl 28222 onmulscl 28223 |
| Copyright terms: Public domain | W3C validator |