| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idresefmnd | Structured version Visualization version GIF version | ||
| Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| idressubmefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
| idresefmnd.e | ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) |
| Ref | Expression |
|---|---|
| idresefmnd | ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idressubmefmnd.g | . . 3 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 2 | 1 | idressubmefmnd 18874 | . 2 ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺)) |
| 3 | 1 | efmndmnd 18865 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
| 4 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = (𝐺 ↾s {( I ↾ 𝐴)}) | |
| 7 | 4, 5, 6 | issubm2 18780 | . . . 4 ⊢ (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
| 8 | 3, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
| 9 | snex 5406 | . . . . . . 7 ⊢ {( I ↾ 𝐴)} ∈ V | |
| 10 | idresefmnd.e | . . . . . . . 8 ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) | |
| 11 | 10, 4 | ressbas 17255 | . . . . . . 7 ⊢ ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
| 12 | 9, 11 | mp1i 13 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
| 13 | inss2 4213 | . . . . . 6 ⊢ ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺) | |
| 14 | 12, 13 | eqsstrrdi 4004 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺)) |
| 15 | 10 | eqcomi 2744 | . . . . . . . 8 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = 𝐸 |
| 16 | 15 | eleq1i 2825 | . . . . . . 7 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd) |
| 17 | 16 | biimpi 216 | . . . . . 6 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd) |
| 18 | 17 | 3ad2ant3 1135 | . . . . 5 ⊢ (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd) |
| 19 | 14, 18 | anim12ci 614 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
| 20 | 19 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
| 21 | 8, 20 | sylbid 240 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
| 22 | 2, 21 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 {csn 4601 I cid 5547 ↾ cres 5656 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 ↾s cress 17249 0gc0g 17451 Mndcmnd 18710 SubMndcsubmnd 18758 EndoFMndcefmnd 18844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-tset 17288 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-efmnd 18845 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |