MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idresefmnd Structured version   Visualization version   GIF version

Theorem idresefmnd 18875
Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
idressubmefmnd.g 𝐺 = (EndoFMnd‘𝐴)
idresefmnd.e 𝐸 = (𝐺s {( I ↾ 𝐴)})
Assertion
Ref Expression
idresefmnd (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))

Proof of Theorem idresefmnd
StepHypRef Expression
1 idressubmefmnd.g . . 3 𝐺 = (EndoFMnd‘𝐴)
21idressubmefmnd 18874 . 2 (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺))
31efmndmnd 18865 . . . 4 (𝐴𝑉𝐺 ∈ Mnd)
4 eqid 2735 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2735 . . . . 5 (0g𝐺) = (0g𝐺)
6 eqid 2735 . . . . 5 (𝐺s {( I ↾ 𝐴)}) = (𝐺s {( I ↾ 𝐴)})
74, 5, 6issubm2 18780 . . . 4 (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
83, 7syl 17 . . 3 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
9 snex 5406 . . . . . . 7 {( I ↾ 𝐴)} ∈ V
10 idresefmnd.e . . . . . . . 8 𝐸 = (𝐺s {( I ↾ 𝐴)})
1110, 4ressbas 17255 . . . . . . 7 ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
129, 11mp1i 13 . . . . . 6 (𝐴𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
13 inss2 4213 . . . . . 6 ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺)
1412, 13eqsstrrdi 4004 . . . . 5 (𝐴𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺))
1510eqcomi 2744 . . . . . . . 8 (𝐺s {( I ↾ 𝐴)}) = 𝐸
1615eleq1i 2825 . . . . . . 7 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd)
1716biimpi 216 . . . . . 6 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd)
18173ad2ant3 1135 . . . . 5 (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd)
1914, 18anim12ci 614 . . . 4 ((𝐴𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
2019ex 412 . . 3 (𝐴𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
218, 20sylbid 240 . 2 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
222, 21mpd 15 1 (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  wss 3926  {csn 4601   I cid 5547  cres 5656  cfv 6530  (class class class)co 7403  Basecbs 17226  s cress 17249  0gc0g 17451  Mndcmnd 18710  SubMndcsubmnd 18758  EndoFMndcefmnd 18844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-tset 17288  df-0g 17453  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-efmnd 18845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator