MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idresefmnd Structured version   Visualization version   GIF version

Theorem idresefmnd 18453
Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
idressubmefmnd.g 𝐺 = (EndoFMnd‘𝐴)
idresefmnd.e 𝐸 = (𝐺s {( I ↾ 𝐴)})
Assertion
Ref Expression
idresefmnd (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))

Proof of Theorem idresefmnd
StepHypRef Expression
1 idressubmefmnd.g . . 3 𝐺 = (EndoFMnd‘𝐴)
21idressubmefmnd 18452 . 2 (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺))
31efmndmnd 18443 . . . 4 (𝐴𝑉𝐺 ∈ Mnd)
4 eqid 2738 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2738 . . . . 5 (0g𝐺) = (0g𝐺)
6 eqid 2738 . . . . 5 (𝐺s {( I ↾ 𝐴)}) = (𝐺s {( I ↾ 𝐴)})
74, 5, 6issubm2 18358 . . . 4 (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
83, 7syl 17 . . 3 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
9 snex 5349 . . . . . . 7 {( I ↾ 𝐴)} ∈ V
10 idresefmnd.e . . . . . . . 8 𝐸 = (𝐺s {( I ↾ 𝐴)})
1110, 4ressbas 16873 . . . . . . 7 ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
129, 11mp1i 13 . . . . . 6 (𝐴𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
13 inss2 4160 . . . . . 6 ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺)
1412, 13eqsstrrdi 3972 . . . . 5 (𝐴𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺))
1510eqcomi 2747 . . . . . . . 8 (𝐺s {( I ↾ 𝐴)}) = 𝐸
1615eleq1i 2829 . . . . . . 7 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd)
1716biimpi 215 . . . . . 6 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd)
18173ad2ant3 1133 . . . . 5 (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd)
1914, 18anim12ci 613 . . . 4 ((𝐴𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
2019ex 412 . . 3 (𝐴𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
218, 20sylbid 239 . 2 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
222, 21mpd 15 1 (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  {csn 4558   I cid 5479  cres 5582  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  0gc0g 17067  Mndcmnd 18300  SubMndcsubmnd 18344  EndoFMndcefmnd 18422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-efmnd 18423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator