MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idresefmnd Structured version   Visualization version   GIF version

Theorem idresefmnd 18064
Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
idressubmefmnd.g 𝐺 = (EndoFMnd‘𝐴)
idresefmnd.e 𝐸 = (𝐺s {( I ↾ 𝐴)})
Assertion
Ref Expression
idresefmnd (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))

Proof of Theorem idresefmnd
StepHypRef Expression
1 idressubmefmnd.g . . 3 𝐺 = (EndoFMnd‘𝐴)
21idressubmefmnd 18063 . 2 (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺))
31efmndmnd 18054 . . . 4 (𝐴𝑉𝐺 ∈ Mnd)
4 eqid 2821 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2821 . . . . 5 (0g𝐺) = (0g𝐺)
6 eqid 2821 . . . . 5 (𝐺s {( I ↾ 𝐴)}) = (𝐺s {( I ↾ 𝐴)})
74, 5, 6issubm2 17969 . . . 4 (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
83, 7syl 17 . . 3 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
9 snex 5332 . . . . . . 7 {( I ↾ 𝐴)} ∈ V
10 idresefmnd.e . . . . . . . 8 𝐸 = (𝐺s {( I ↾ 𝐴)})
1110, 4ressbas 16554 . . . . . . 7 ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
129, 11mp1i 13 . . . . . 6 (𝐴𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
13 inss2 4206 . . . . . 6 ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺)
1412, 13eqsstrrdi 4022 . . . . 5 (𝐴𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺))
1510eqcomi 2830 . . . . . . . 8 (𝐺s {( I ↾ 𝐴)}) = 𝐸
1615eleq1i 2903 . . . . . . 7 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd)
1716biimpi 218 . . . . . 6 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd)
18173ad2ant3 1131 . . . . 5 (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd)
1914, 18anim12ci 615 . . . 4 ((𝐴𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
2019ex 415 . . 3 (𝐴𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
218, 20sylbid 242 . 2 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
222, 21mpd 15 1 (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  wss 3936  {csn 4567   I cid 5459  cres 5557  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  0gc0g 16713  Mndcmnd 17911  SubMndcsubmnd 17955  EndoFMndcefmnd 18033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-efmnd 18034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator