| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idresefmnd | Structured version Visualization version GIF version | ||
| Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| idressubmefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
| idresefmnd.e | ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) |
| Ref | Expression |
|---|---|
| idresefmnd | ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idressubmefmnd.g | . . 3 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 2 | 1 | idressubmefmnd 18825 | . 2 ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺)) |
| 3 | 1 | efmndmnd 18816 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
| 4 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = (𝐺 ↾s {( I ↾ 𝐴)}) | |
| 7 | 4, 5, 6 | issubm2 18731 | . . . 4 ⊢ (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
| 8 | 3, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
| 9 | snex 5391 | . . . . . . 7 ⊢ {( I ↾ 𝐴)} ∈ V | |
| 10 | idresefmnd.e | . . . . . . . 8 ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) | |
| 11 | 10, 4 | ressbas 17206 | . . . . . . 7 ⊢ ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
| 12 | 9, 11 | mp1i 13 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
| 13 | inss2 4201 | . . . . . 6 ⊢ ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺) | |
| 14 | 12, 13 | eqsstrrdi 3992 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺)) |
| 15 | 10 | eqcomi 2738 | . . . . . . . 8 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = 𝐸 |
| 16 | 15 | eleq1i 2819 | . . . . . . 7 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd) |
| 17 | 16 | biimpi 216 | . . . . . 6 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd) |
| 18 | 17 | 3ad2ant3 1135 | . . . . 5 ⊢ (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd) |
| 19 | 14, 18 | anim12ci 614 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
| 20 | 19 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
| 21 | 8, 20 | sylbid 240 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
| 22 | 2, 21 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 {csn 4589 I cid 5532 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 0gc0g 17402 Mndcmnd 18661 SubMndcsubmnd 18709 EndoFMndcefmnd 18795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-tset 17239 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-efmnd 18796 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |