Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idresefmnd | Structured version Visualization version GIF version |
Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
idressubmefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
idresefmnd.e | ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) |
Ref | Expression |
---|---|
idresefmnd | ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idressubmefmnd.g | . . 3 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
2 | 1 | idressubmefmnd 18537 | . 2 ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺)) |
3 | 1 | efmndmnd 18528 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
4 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | eqid 2738 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | eqid 2738 | . . . . 5 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = (𝐺 ↾s {( I ↾ 𝐴)}) | |
7 | 4, 5, 6 | issubm2 18443 | . . . 4 ⊢ (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
8 | 3, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
9 | snex 5354 | . . . . . . 7 ⊢ {( I ↾ 𝐴)} ∈ V | |
10 | idresefmnd.e | . . . . . . . 8 ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) | |
11 | 10, 4 | ressbas 16947 | . . . . . . 7 ⊢ ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
12 | 9, 11 | mp1i 13 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
13 | inss2 4163 | . . . . . 6 ⊢ ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺) | |
14 | 12, 13 | eqsstrrdi 3976 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺)) |
15 | 10 | eqcomi 2747 | . . . . . . . 8 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = 𝐸 |
16 | 15 | eleq1i 2829 | . . . . . . 7 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd) |
17 | 16 | biimpi 215 | . . . . . 6 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd) |
18 | 17 | 3ad2ant3 1134 | . . . . 5 ⊢ (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd) |
19 | 14, 18 | anim12ci 614 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
20 | 19 | ex 413 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
21 | 8, 20 | sylbid 239 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
22 | 2, 21 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 {csn 4561 I cid 5488 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 0gc0g 17150 Mndcmnd 18385 SubMndcsubmnd 18429 EndoFMndcefmnd 18507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-tset 16981 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-efmnd 18508 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |