MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idresefmnd Structured version   Visualization version   GIF version

Theorem idresefmnd 18817
Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
idressubmefmnd.g 𝐺 = (EndoFMnd‘𝐴)
idresefmnd.e 𝐸 = (𝐺s {( I ↾ 𝐴)})
Assertion
Ref Expression
idresefmnd (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))

Proof of Theorem idresefmnd
StepHypRef Expression
1 idressubmefmnd.g . . 3 𝐺 = (EndoFMnd‘𝐴)
21idressubmefmnd 18816 . 2 (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺))
31efmndmnd 18807 . . . 4 (𝐴𝑉𝐺 ∈ Mnd)
4 eqid 2733 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2733 . . . . 5 (0g𝐺) = (0g𝐺)
6 eqid 2733 . . . . 5 (𝐺s {( I ↾ 𝐴)}) = (𝐺s {( I ↾ 𝐴)})
74, 5, 6issubm2 18722 . . . 4 (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
83, 7syl 17 . . 3 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
9 snex 5378 . . . . . . 7 {( I ↾ 𝐴)} ∈ V
10 idresefmnd.e . . . . . . . 8 𝐸 = (𝐺s {( I ↾ 𝐴)})
1110, 4ressbas 17157 . . . . . . 7 ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
129, 11mp1i 13 . . . . . 6 (𝐴𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
13 inss2 4189 . . . . . 6 ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺)
1412, 13eqsstrrdi 3977 . . . . 5 (𝐴𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺))
1510eqcomi 2742 . . . . . . . 8 (𝐺s {( I ↾ 𝐴)}) = 𝐸
1615eleq1i 2824 . . . . . . 7 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd)
1716biimpi 216 . . . . . 6 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd)
18173ad2ant3 1135 . . . . 5 (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd)
1914, 18anim12ci 614 . . . 4 ((𝐴𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
2019ex 412 . . 3 (𝐴𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
218, 20sylbid 240 . 2 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
222, 21mpd 15 1 (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3438  cin 3898  wss 3899  {csn 4577   I cid 5515  cres 5623  cfv 6489  (class class class)co 7355  Basecbs 17130  s cress 17151  0gc0g 17353  Mndcmnd 18652  SubMndcsubmnd 18700  EndoFMndcefmnd 18786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-tset 17190  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-efmnd 18787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator