MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idresefmnd Structured version   Visualization version   GIF version

Theorem idresefmnd 18925
Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
idressubmefmnd.g 𝐺 = (EndoFMnd‘𝐴)
idresefmnd.e 𝐸 = (𝐺s {( I ↾ 𝐴)})
Assertion
Ref Expression
idresefmnd (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))

Proof of Theorem idresefmnd
StepHypRef Expression
1 idressubmefmnd.g . . 3 𝐺 = (EndoFMnd‘𝐴)
21idressubmefmnd 18924 . 2 (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺))
31efmndmnd 18915 . . . 4 (𝐴𝑉𝐺 ∈ Mnd)
4 eqid 2735 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2735 . . . . 5 (0g𝐺) = (0g𝐺)
6 eqid 2735 . . . . 5 (𝐺s {( I ↾ 𝐴)}) = (𝐺s {( I ↾ 𝐴)})
74, 5, 6issubm2 18830 . . . 4 (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
83, 7syl 17 . . 3 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)))
9 snex 5442 . . . . . . 7 {( I ↾ 𝐴)} ∈ V
10 idresefmnd.e . . . . . . . 8 𝐸 = (𝐺s {( I ↾ 𝐴)})
1110, 4ressbas 17280 . . . . . . 7 ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
129, 11mp1i 13 . . . . . 6 (𝐴𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
13 inss2 4246 . . . . . 6 ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺)
1412, 13eqsstrrdi 4051 . . . . 5 (𝐴𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺))
1510eqcomi 2744 . . . . . . . 8 (𝐺s {( I ↾ 𝐴)}) = 𝐸
1615eleq1i 2830 . . . . . . 7 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd)
1716biimpi 216 . . . . . 6 ((𝐺s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd)
18173ad2ant3 1134 . . . . 5 (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd)
1914, 18anim12ci 614 . . . 4 ((𝐴𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
2019ex 412 . . 3 (𝐴𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
218, 20sylbid 240 . 2 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
222, 21mpd 15 1 (𝐴𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  wss 3963  {csn 4631   I cid 5582  cres 5691  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  0gc0g 17486  Mndcmnd 18760  SubMndcsubmnd 18808  EndoFMndcefmnd 18894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-tset 17317  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-efmnd 18895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator