Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idresefmnd | Structured version Visualization version GIF version |
Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
idressubmefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
idresefmnd.e | ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) |
Ref | Expression |
---|---|
idresefmnd | ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idressubmefmnd.g | . . 3 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
2 | 1 | idressubmefmnd 18143 | . 2 ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺)) |
3 | 1 | efmndmnd 18134 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
4 | eqid 2758 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | eqid 2758 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | eqid 2758 | . . . . 5 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = (𝐺 ↾s {( I ↾ 𝐴)}) | |
7 | 4, 5, 6 | issubm2 18049 | . . . 4 ⊢ (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
8 | 3, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
9 | snex 5304 | . . . . . . 7 ⊢ {( I ↾ 𝐴)} ∈ V | |
10 | idresefmnd.e | . . . . . . . 8 ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) | |
11 | 10, 4 | ressbas 16626 | . . . . . . 7 ⊢ ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
12 | 9, 11 | mp1i 13 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
13 | inss2 4136 | . . . . . 6 ⊢ ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺) | |
14 | 12, 13 | eqsstrrdi 3949 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺)) |
15 | 10 | eqcomi 2767 | . . . . . . . 8 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = 𝐸 |
16 | 15 | eleq1i 2842 | . . . . . . 7 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd) |
17 | 16 | biimpi 219 | . . . . . 6 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd) |
18 | 17 | 3ad2ant3 1132 | . . . . 5 ⊢ (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd) |
19 | 14, 18 | anim12ci 616 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
20 | 19 | ex 416 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
21 | 8, 20 | sylbid 243 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
22 | 2, 21 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3859 ⊆ wss 3860 {csn 4525 I cid 5433 ↾ cres 5530 ‘cfv 6340 (class class class)co 7156 Basecbs 16555 ↾s cress 16556 0gc0g 16785 Mndcmnd 17991 SubMndcsubmnd 18035 EndoFMndcefmnd 18113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-tset 16656 df-0g 16787 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-submnd 18037 df-efmnd 18114 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |