![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idresefmnd | Structured version Visualization version GIF version |
Description: The structure with the singleton containing only the identity function restricted to a set 𝐴 as base set and the function composition as group operation, constructed by (structure) restricting the monoid of endofunctions on 𝐴 to that singleton, is a monoid whose base set is a subset of the base set of the monoid of endofunctions on 𝐴. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
idressubmefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
idresefmnd.e | ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) |
Ref | Expression |
---|---|
idresefmnd | ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idressubmefmnd.g | . . 3 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
2 | 1 | idressubmefmnd 18858 | . 2 ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubMnd‘𝐺)) |
3 | 1 | efmndmnd 18849 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd) |
4 | eqid 2725 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | eqid 2725 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | eqid 2725 | . . . . 5 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = (𝐺 ↾s {( I ↾ 𝐴)}) | |
7 | 4, 5, 6 | issubm2 18764 | . . . 4 ⊢ (𝐺 ∈ Mnd → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
8 | 3, 7 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd))) |
9 | snex 5433 | . . . . . . 7 ⊢ {( I ↾ 𝐴)} ∈ V | |
10 | idresefmnd.e | . . . . . . . 8 ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) | |
11 | 10, 4 | ressbas 17218 | . . . . . . 7 ⊢ ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
12 | 9, 11 | mp1i 13 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
13 | inss2 4228 | . . . . . 6 ⊢ ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺) | |
14 | 12, 13 | eqsstrrdi 4032 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺)) |
15 | 10 | eqcomi 2734 | . . . . . . . 8 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = 𝐸 |
16 | 15 | eleq1i 2816 | . . . . . . 7 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd ↔ 𝐸 ∈ Mnd) |
17 | 16 | biimpi 215 | . . . . . 6 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd → 𝐸 ∈ Mnd) |
18 | 17 | 3ad2ant3 1132 | . . . . 5 ⊢ (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → 𝐸 ∈ Mnd) |
19 | 14, 18 | anim12ci 612 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd)) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
20 | 19 | ex 411 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (0g‘𝐺) ∈ {( I ↾ 𝐴)} ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Mnd) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
21 | 8, 20 | sylbid 239 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubMnd‘𝐺) → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
22 | 2, 21 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Mnd ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∩ cin 3943 ⊆ wss 3944 {csn 4630 I cid 5575 ↾ cres 5680 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 ↾s cress 17212 0gc0g 17424 Mndcmnd 18697 SubMndcsubmnd 18742 EndoFMndcefmnd 18828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-tset 17255 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-efmnd 18829 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |