MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idrespermg Structured version   Visualization version   GIF version

Theorem idrespermg 19383
Description: The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019.)
Hypotheses
Ref Expression
idressubgsymg.g 𝐺 = (SymGrp‘𝐴)
idrespermg.e 𝐸 = (𝐺s {( I ↾ 𝐴)})
Assertion
Ref Expression
idrespermg (𝐴𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))

Proof of Theorem idrespermg
StepHypRef Expression
1 idressubgsymg.g . . 3 𝐺 = (SymGrp‘𝐴)
21idressubgsymg 19382 . 2 (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubGrp‘𝐺))
3 eqid 2725 . . . 4 (Base‘𝐺) = (Base‘𝐺)
41, 3pgrpsubgsymgbi 19380 . . 3 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp)))
5 snex 5433 . . . . . . 7 {( I ↾ 𝐴)} ∈ V
6 idrespermg.e . . . . . . . 8 𝐸 = (𝐺s {( I ↾ 𝐴)})
76, 3ressbas 17223 . . . . . . 7 ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
85, 7mp1i 13 . . . . . 6 (𝐴𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
9 inss2 4228 . . . . . 6 ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺)
108, 9eqsstrrdi 4032 . . . . 5 (𝐴𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺))
116eqcomi 2734 . . . . . . . 8 (𝐺s {( I ↾ 𝐴)}) = 𝐸
1211eleq1i 2816 . . . . . . 7 ((𝐺s {( I ↾ 𝐴)}) ∈ Grp ↔ 𝐸 ∈ Grp)
1312biimpi 215 . . . . . 6 ((𝐺s {( I ↾ 𝐴)}) ∈ Grp → 𝐸 ∈ Grp)
1413adantl 480 . . . . 5 (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp) → 𝐸 ∈ Grp)
1510, 14anim12ci 612 . . . 4 ((𝐴𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp)) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
1615ex 411 . . 3 (𝐴𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
174, 16sylbid 239 . 2 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
182, 17mpd 15 1 (𝐴𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  cin 3943  wss 3944  {csn 4630   I cid 5575  cres 5680  cfv 6549  (class class class)co 7419  Basecbs 17188  s cress 17217  Grpcgrp 18903  SubGrpcsubg 19088  SymGrpcsymg 19338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-tset 17260  df-0g 17431  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-submnd 18749  df-efmnd 18834  df-grp 18906  df-minusg 18907  df-subg 19091  df-symg 19339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator