| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > idrespermg | Structured version Visualization version GIF version | ||
| Description: The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019.) | 
| Ref | Expression | 
|---|---|
| idressubgsymg.g | ⊢ 𝐺 = (SymGrp‘𝐴) | 
| idrespermg.e | ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) | 
| Ref | Expression | 
|---|---|
| idrespermg | ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | idressubgsymg.g | . . 3 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | 1 | idressubgsymg 19395 | . 2 ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubGrp‘𝐺)) | 
| 3 | eqid 2734 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 1, 3 | pgrpsubgsymgbi 19393 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp))) | 
| 5 | snex 5416 | . . . . . . 7 ⊢ {( I ↾ 𝐴)} ∈ V | |
| 6 | idrespermg.e | . . . . . . . 8 ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) | |
| 7 | 6, 3 | ressbas 17257 | . . . . . . 7 ⊢ ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) | 
| 8 | 5, 7 | mp1i 13 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) | 
| 9 | inss2 4218 | . . . . . 6 ⊢ ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺) | |
| 10 | 8, 9 | eqsstrrdi 4009 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺)) | 
| 11 | 6 | eqcomi 2743 | . . . . . . . 8 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = 𝐸 | 
| 12 | 11 | eleq1i 2824 | . . . . . . 7 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp ↔ 𝐸 ∈ Grp) | 
| 13 | 12 | biimpi 216 | . . . . . 6 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp → 𝐸 ∈ Grp) | 
| 14 | 13 | adantl 481 | . . . . 5 ⊢ (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp) → 𝐸 ∈ Grp) | 
| 15 | 10, 14 | anim12ci 614 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp)) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) | 
| 16 | 15 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) | 
| 17 | 4, 16 | sylbid 240 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) | 
| 18 | 2, 17 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 ⊆ wss 3931 {csn 4606 I cid 5557 ↾ cres 5667 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 ↾s cress 17251 Grpcgrp 18919 SubGrpcsubg 19106 SymGrpcsymg 19353 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-uz 12860 df-fz 13529 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-tset 17291 df-0g 17456 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-submnd 18765 df-efmnd 18850 df-grp 18922 df-minusg 18923 df-subg 19109 df-symg 19354 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |