MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idrespermg Structured version   Visualization version   GIF version

Theorem idrespermg 19329
Description: The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019.)
Hypotheses
Ref Expression
idressubgsymg.g 𝐺 = (SymGrp‘𝐴)
idrespermg.e 𝐸 = (𝐺s {( I ↾ 𝐴)})
Assertion
Ref Expression
idrespermg (𝐴𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))

Proof of Theorem idrespermg
StepHypRef Expression
1 idressubgsymg.g . . 3 𝐺 = (SymGrp‘𝐴)
21idressubgsymg 19328 . 2 (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubGrp‘𝐺))
3 eqid 2731 . . . 4 (Base‘𝐺) = (Base‘𝐺)
41, 3pgrpsubgsymgbi 19326 . . 3 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp)))
5 snex 5376 . . . . . . 7 {( I ↾ 𝐴)} ∈ V
6 idrespermg.e . . . . . . . 8 𝐸 = (𝐺s {( I ↾ 𝐴)})
76, 3ressbas 17153 . . . . . . 7 ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
85, 7mp1i 13 . . . . . 6 (𝐴𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
9 inss2 4187 . . . . . 6 ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺)
108, 9eqsstrrdi 3975 . . . . 5 (𝐴𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺))
116eqcomi 2740 . . . . . . . 8 (𝐺s {( I ↾ 𝐴)}) = 𝐸
1211eleq1i 2822 . . . . . . 7 ((𝐺s {( I ↾ 𝐴)}) ∈ Grp ↔ 𝐸 ∈ Grp)
1312biimpi 216 . . . . . 6 ((𝐺s {( I ↾ 𝐴)}) ∈ Grp → 𝐸 ∈ Grp)
1413adantl 481 . . . . 5 (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp) → 𝐸 ∈ Grp)
1510, 14anim12ci 614 . . . 4 ((𝐴𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp)) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
1615ex 412 . . 3 (𝐴𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
174, 16sylbid 240 . 2 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
182, 17mpd 15 1 (𝐴𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  wss 3897  {csn 4575   I cid 5513  cres 5621  cfv 6487  (class class class)co 7352  Basecbs 17126  s cress 17147  Grpcgrp 18852  SubGrpcsubg 19039  SymGrpcsymg 19287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-tset 17186  df-0g 17351  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-efmnd 18783  df-grp 18855  df-minusg 18856  df-subg 19042  df-symg 19288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator