MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idrespermg Structured version   Visualization version   GIF version

Theorem idrespermg 19019
Description: The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019.)
Hypotheses
Ref Expression
idressubgsymg.g 𝐺 = (SymGrp‘𝐴)
idrespermg.e 𝐸 = (𝐺s {( I ↾ 𝐴)})
Assertion
Ref Expression
idrespermg (𝐴𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))

Proof of Theorem idrespermg
StepHypRef Expression
1 idressubgsymg.g . . 3 𝐺 = (SymGrp‘𝐴)
21idressubgsymg 19018 . 2 (𝐴𝑉 → {( I ↾ 𝐴)} ∈ (SubGrp‘𝐺))
3 eqid 2738 . . . 4 (Base‘𝐺) = (Base‘𝐺)
41, 3pgrpsubgsymgbi 19016 . . 3 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp)))
5 snex 5354 . . . . . . 7 {( I ↾ 𝐴)} ∈ V
6 idrespermg.e . . . . . . . 8 𝐸 = (𝐺s {( I ↾ 𝐴)})
76, 3ressbas 16947 . . . . . . 7 ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
85, 7mp1i 13 . . . . . 6 (𝐴𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸))
9 inss2 4163 . . . . . 6 ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺)
108, 9eqsstrrdi 3976 . . . . 5 (𝐴𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺))
116eqcomi 2747 . . . . . . . 8 (𝐺s {( I ↾ 𝐴)}) = 𝐸
1211eleq1i 2829 . . . . . . 7 ((𝐺s {( I ↾ 𝐴)}) ∈ Grp ↔ 𝐸 ∈ Grp)
1312biimpi 215 . . . . . 6 ((𝐺s {( I ↾ 𝐴)}) ∈ Grp → 𝐸 ∈ Grp)
1413adantl 482 . . . . 5 (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp) → 𝐸 ∈ Grp)
1510, 14anim12ci 614 . . . 4 ((𝐴𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp)) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
1615ex 413 . . 3 (𝐴𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺s {( I ↾ 𝐴)}) ∈ Grp) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
174, 16sylbid 239 . 2 (𝐴𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))))
182, 17mpd 15 1 (𝐴𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  {csn 4561   I cid 5488  cres 5591  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Grpcgrp 18577  SubGrpcsubg 18749  SymGrpcsymg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-subg 18752  df-symg 18975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator