| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idrespermg | Structured version Visualization version GIF version | ||
| Description: The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019.) |
| Ref | Expression |
|---|---|
| idressubgsymg.g | ⊢ 𝐺 = (SymGrp‘𝐴) |
| idrespermg.e | ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) |
| Ref | Expression |
|---|---|
| idrespermg | ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idressubgsymg.g | . . 3 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | 1 | idressubgsymg 19315 | . 2 ⊢ (𝐴 ∈ 𝑉 → {( I ↾ 𝐴)} ∈ (SubGrp‘𝐺)) |
| 3 | eqid 2730 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 1, 3 | pgrpsubgsymgbi 19313 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) ↔ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp))) |
| 5 | snex 5372 | . . . . . . 7 ⊢ {( I ↾ 𝐴)} ∈ V | |
| 6 | idrespermg.e | . . . . . . . 8 ⊢ 𝐸 = (𝐺 ↾s {( I ↾ 𝐴)}) | |
| 7 | 6, 3 | ressbas 17139 | . . . . . . 7 ⊢ ({( I ↾ 𝐴)} ∈ V → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
| 8 | 5, 7 | mp1i 13 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) = (Base‘𝐸)) |
| 9 | inss2 4186 | . . . . . 6 ⊢ ({( I ↾ 𝐴)} ∩ (Base‘𝐺)) ⊆ (Base‘𝐺) | |
| 10 | 8, 9 | eqsstrrdi 3978 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐸) ⊆ (Base‘𝐺)) |
| 11 | 6 | eqcomi 2739 | . . . . . . . 8 ⊢ (𝐺 ↾s {( I ↾ 𝐴)}) = 𝐸 |
| 12 | 11 | eleq1i 2820 | . . . . . . 7 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp ↔ 𝐸 ∈ Grp) |
| 13 | 12 | biimpi 216 | . . . . . 6 ⊢ ((𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp → 𝐸 ∈ Grp) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp) → 𝐸 ∈ Grp) |
| 15 | 10, 14 | anim12ci 614 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp)) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
| 16 | 15 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (({( I ↾ 𝐴)} ⊆ (Base‘𝐺) ∧ (𝐺 ↾s {( I ↾ 𝐴)}) ∈ Grp) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
| 17 | 4, 16 | sylbid 240 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({( I ↾ 𝐴)} ∈ (SubGrp‘𝐺) → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺)))) |
| 18 | 2, 17 | mpd 15 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐸 ∈ Grp ∧ (Base‘𝐸) ⊆ (Base‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∩ cin 3899 ⊆ wss 3900 {csn 4574 I cid 5508 ↾ cres 5616 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 ↾s cress 17133 Grpcgrp 18838 SubGrpcsubg 19025 SymGrpcsymg 19274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-tset 17172 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-efmnd 18769 df-grp 18841 df-minusg 18842 df-subg 19028 df-symg 19275 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |