MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsumo Structured version   Visualization version   GIF version

Theorem telfsumo 15149
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsumo.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsumo.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsumo.4 (𝑘 = 𝑁𝐴 = 𝐸)
telfsumo.5 (𝜑𝑁 ∈ (ℤ𝑀))
telfsumo.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsumo (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsumo
StepHypRef Expression
1 telfsumo.3 . . . . . . . 8 (𝑘 = 𝑀𝐴 = 𝐷)
21eleq1d 2901 . . . . . . 7 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
3 telfsumo.6 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
43ralrimiva 3186 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
5 telfsumo.5 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzfz1 12907 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
75, 6syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
82, 4, 7rspcdva 3628 . . . . . 6 (𝜑𝐷 ∈ ℂ)
98adantr 481 . . . . 5 ((𝜑𝑁 = 𝑀) → 𝐷 ∈ ℂ)
109subidd 10977 . . . 4 ((𝜑𝑁 = 𝑀) → (𝐷𝐷) = 0)
11 sum0 15070 . . . 4 Σ𝑗 ∈ ∅ (𝐵𝐶) = 0
1210, 11syl6reqr 2879 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ ∅ (𝐵𝐶) = (𝐷𝐷))
13 oveq2 7159 . . . . . 6 (𝑁 = 𝑀 → (𝑀..^𝑁) = (𝑀..^𝑀))
1413adantl 482 . . . . 5 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀))
15 fzo0 13054 . . . . 5 (𝑀..^𝑀) = ∅
1614, 15syl6eq 2876 . . . 4 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = ∅)
1716sumeq1d 15050 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = Σ𝑗 ∈ ∅ (𝐵𝐶))
18 eqeq1 2829 . . . . . . . 8 (𝑘 = 𝑁 → (𝑘 = 𝑀𝑁 = 𝑀))
19 telfsumo.4 . . . . . . . . 9 (𝑘 = 𝑁𝐴 = 𝐸)
2019eqeq1d 2827 . . . . . . . 8 (𝑘 = 𝑁 → (𝐴 = 𝐷𝐸 = 𝐷))
2118, 20imbi12d 346 . . . . . . 7 (𝑘 = 𝑁 → ((𝑘 = 𝑀𝐴 = 𝐷) ↔ (𝑁 = 𝑀𝐸 = 𝐷)))
2221, 1vtoclg 3572 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝐸 = 𝐷))
2322imp 407 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝐸 = 𝐷)
245, 23sylan 580 . . . 4 ((𝜑𝑁 = 𝑀) → 𝐸 = 𝐷)
2524oveq2d 7167 . . 3 ((𝜑𝑁 = 𝑀) → (𝐷𝐸) = (𝐷𝐷))
2612, 17, 253eqtr4d 2870 . 2 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
27 fzofi 13335 . . . . . 6 (𝑀..^𝑁) ∈ Fin
2827a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
29 telfsumo.1 . . . . . . 7 (𝑘 = 𝑗𝐴 = 𝐵)
3029eleq1d 2901 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
314adantr 481 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
32 elfzofz 13046 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
3332adantl 482 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...𝑁))
3430, 31, 33rspcdva 3628 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
35 telfsumo.2 . . . . . . 7 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
3635eleq1d 2901 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
37 fzofzp1 13127 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
3837adantl 482 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...𝑁))
3936, 31, 38rspcdva 3628 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
4028, 34, 39fsumsub 15135 . . . 4 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4140adantr 481 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4229cbvsumv 15045 . . . . 5 Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐵
43 eluzel2 12240 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
445, 43syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
45 eluzp1m1 12260 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
4644, 45sylan 580 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
47 eluzelz 12245 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
485, 47syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
4948adantr 481 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ ℤ)
50 fzoval 13032 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
5149, 50syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
52 fzossfz 13049 . . . . . . . . . 10 (𝑀..^𝑁) ⊆ (𝑀...𝑁)
5351, 52eqsstrrdi 4025 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
5453sselda 3970 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...𝑁))
553adantlr 711 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
5654, 55syldan 591 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
5746, 56, 1fsum1p 15100 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
5851sumeq1d 15050 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴)
59 fzoval 13032 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6049, 59syl 17 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6160sumeq1d 15050 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
6261oveq2d 7167 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
6357, 58, 623eqtr4d 2870 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
6442, 63syl5eqr 2874 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐵 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
65 simpr 485 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
66 fzp1ss 12951 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6744, 66syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6867sselda 3970 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
6968, 3syldan 591 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7069adantlr 711 . . . . . 6 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7165, 70, 19fsumm1 15098 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
72 1zzd 12005 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
7344peano2zd 12082 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
7472, 73, 48, 69, 35fsumshftm 15128 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶)
7544zcnd 12080 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
76 ax-1cn 10587 . . . . . . . . . . 11 1 ∈ ℂ
77 pncan 10884 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7875, 76, 77sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7978oveq1d 7166 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1)))
8048, 50syl 17 . . . . . . . . 9 (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
8179, 80eqtr4d 2863 . . . . . . . 8 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀..^𝑁))
8281sumeq1d 15050 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8374, 82eqtrd 2860 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8483adantr 481 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8548, 59syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
8685sumeq1d 15050 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
8786oveq1d 7166 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
88 fzofi 13335 . . . . . . . . . 10 ((𝑀 + 1)..^𝑁) ∈ Fin
8988a1i 11 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) ∈ Fin)
90 elfzofz 13046 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑘 ∈ ((𝑀 + 1)...𝑁))
9190, 69sylan2 592 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝐴 ∈ ℂ)
9289, 91fsumcl 15082 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 ∈ ℂ)
9319eleq1d 2901 . . . . . . . . 9 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
94 eluzfz2 12908 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
955, 94syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (𝑀...𝑁))
9693, 4, 95rspcdva 3628 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
9792, 96addcomd 10834 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9887, 97eqtr3d 2862 . . . . . 6 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9998adantr 481 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10071, 84, 993eqtr3d 2868 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐶 = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10164, 100oveq12d 7169 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶) = ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)))
1028, 96, 92pnpcan2d 11027 . . . 4 (𝜑 → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
103102adantr 481 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
10441, 101, 1033eqtrd 2864 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
105 uzp1 12271 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
1065, 105syl 17 . 2 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
10726, 104, 106mpjaodan 954 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 843   = wceq 1530  wcel 2107  wral 3142  wss 3939  c0 4294  cfv 6351  (class class class)co 7151  Fincfn 8501  cc 10527  0cc0 10529  1c1 10530   + caddc 10532  cmin 10862  cz 11973  cuz 12235  ...cfz 12885  ..^cfzo 13026  Σcsu 15035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036
This theorem is referenced by:  telfsumo2  15150  telfsum  15151  geoserg  15213  dchrisumlem2  25980  stirlinglem12  42232
  Copyright terms: Public domain W3C validator