MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsumo Structured version   Visualization version   GIF version

Theorem telfsumo 15838
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsumo.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsumo.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsumo.4 (𝑘 = 𝑁𝐴 = 𝐸)
telfsumo.5 (𝜑𝑁 ∈ (ℤ𝑀))
telfsumo.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsumo (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsumo
StepHypRef Expression
1 sum0 15757 . . . 4 Σ𝑗 ∈ ∅ (𝐵𝐶) = 0
2 telfsumo.3 . . . . . . . 8 (𝑘 = 𝑀𝐴 = 𝐷)
32eleq1d 2826 . . . . . . 7 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
4 telfsumo.6 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
54ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
6 telfsumo.5 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
7 eluzfz1 13571 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
86, 7syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
93, 5, 8rspcdva 3623 . . . . . 6 (𝜑𝐷 ∈ ℂ)
109adantr 480 . . . . 5 ((𝜑𝑁 = 𝑀) → 𝐷 ∈ ℂ)
1110subidd 11608 . . . 4 ((𝜑𝑁 = 𝑀) → (𝐷𝐷) = 0)
121, 11eqtr4id 2796 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ ∅ (𝐵𝐶) = (𝐷𝐷))
13 oveq2 7439 . . . . . 6 (𝑁 = 𝑀 → (𝑀..^𝑁) = (𝑀..^𝑀))
1413adantl 481 . . . . 5 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀))
15 fzo0 13723 . . . . 5 (𝑀..^𝑀) = ∅
1614, 15eqtrdi 2793 . . . 4 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = ∅)
1716sumeq1d 15736 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = Σ𝑗 ∈ ∅ (𝐵𝐶))
18 eqeq1 2741 . . . . . . . 8 (𝑘 = 𝑁 → (𝑘 = 𝑀𝑁 = 𝑀))
19 telfsumo.4 . . . . . . . . 9 (𝑘 = 𝑁𝐴 = 𝐸)
2019eqeq1d 2739 . . . . . . . 8 (𝑘 = 𝑁 → (𝐴 = 𝐷𝐸 = 𝐷))
2118, 20imbi12d 344 . . . . . . 7 (𝑘 = 𝑁 → ((𝑘 = 𝑀𝐴 = 𝐷) ↔ (𝑁 = 𝑀𝐸 = 𝐷)))
2221, 2vtoclg 3554 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝐸 = 𝐷))
2322imp 406 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝐸 = 𝐷)
246, 23sylan 580 . . . 4 ((𝜑𝑁 = 𝑀) → 𝐸 = 𝐷)
2524oveq2d 7447 . . 3 ((𝜑𝑁 = 𝑀) → (𝐷𝐸) = (𝐷𝐷))
2612, 17, 253eqtr4d 2787 . 2 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
27 fzofi 14015 . . . . . 6 (𝑀..^𝑁) ∈ Fin
2827a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
29 telfsumo.1 . . . . . . 7 (𝑘 = 𝑗𝐴 = 𝐵)
3029eleq1d 2826 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
315adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
32 elfzofz 13715 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
3332adantl 481 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...𝑁))
3430, 31, 33rspcdva 3623 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
35 telfsumo.2 . . . . . . 7 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
3635eleq1d 2826 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
37 fzofzp1 13803 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
3837adantl 481 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...𝑁))
3936, 31, 38rspcdva 3623 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
4028, 34, 39fsumsub 15824 . . . 4 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4140adantr 480 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4229cbvsumv 15732 . . . . 5 Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐵
43 eluzel2 12883 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
446, 43syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
45 eluzp1m1 12904 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
4644, 45sylan 580 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
47 eluzelz 12888 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
486, 47syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
4948adantr 480 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ ℤ)
50 fzoval 13700 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
5149, 50syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
52 fzossfz 13718 . . . . . . . . . 10 (𝑀..^𝑁) ⊆ (𝑀...𝑁)
5351, 52eqsstrrdi 4029 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
5453sselda 3983 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...𝑁))
554adantlr 715 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
5654, 55syldan 591 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
5746, 56, 2fsum1p 15789 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
5851sumeq1d 15736 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴)
59 fzoval 13700 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6049, 59syl 17 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6160sumeq1d 15736 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
6261oveq2d 7447 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
6357, 58, 623eqtr4d 2787 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
6442, 63eqtr3id 2791 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐵 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
65 simpr 484 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
66 fzp1ss 13615 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6744, 66syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6867sselda 3983 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
6968, 4syldan 591 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7069adantlr 715 . . . . . 6 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7165, 70, 19fsumm1 15787 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
72 1zzd 12648 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
7344peano2zd 12725 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
7472, 73, 48, 69, 35fsumshftm 15817 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶)
7544zcnd 12723 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
76 ax-1cn 11213 . . . . . . . . . . 11 1 ∈ ℂ
77 pncan 11514 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7875, 76, 77sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7978oveq1d 7446 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1)))
8048, 50syl 17 . . . . . . . . 9 (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
8179, 80eqtr4d 2780 . . . . . . . 8 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀..^𝑁))
8281sumeq1d 15736 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8374, 82eqtrd 2777 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8483adantr 480 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8548, 59syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
8685sumeq1d 15736 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
8786oveq1d 7446 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
88 fzofi 14015 . . . . . . . . . 10 ((𝑀 + 1)..^𝑁) ∈ Fin
8988a1i 11 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) ∈ Fin)
90 elfzofz 13715 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑘 ∈ ((𝑀 + 1)...𝑁))
9190, 69sylan2 593 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝐴 ∈ ℂ)
9289, 91fsumcl 15769 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 ∈ ℂ)
9319eleq1d 2826 . . . . . . . . 9 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
94 eluzfz2 13572 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
956, 94syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (𝑀...𝑁))
9693, 5, 95rspcdva 3623 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
9792, 96addcomd 11463 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9887, 97eqtr3d 2779 . . . . . 6 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9998adantr 480 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10071, 84, 993eqtr3d 2785 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐶 = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10164, 100oveq12d 7449 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶) = ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)))
1029, 96, 92pnpcan2d 11658 . . . 4 (𝜑 → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
103102adantr 480 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
10441, 101, 1033eqtrd 2781 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
105 uzp1 12919 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
1066, 105syl 17 . 2 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
10726, 104, 106mpjaodan 961 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  wss 3951  c0 4333  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  cz 12613  cuz 12878  ...cfz 13547  ..^cfzo 13694  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  telfsumo2  15839  telfsum  15840  geoserg  15902  dchrisumlem2  27534  stirlinglem12  46100
  Copyright terms: Public domain W3C validator