MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsumo Structured version   Visualization version   GIF version

Theorem telfsumo 15713
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsumo.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsumo.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsumo.4 (𝑘 = 𝑁𝐴 = 𝐸)
telfsumo.5 (𝜑𝑁 ∈ (ℤ𝑀))
telfsumo.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsumo (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsumo
StepHypRef Expression
1 sum0 15632 . . . 4 Σ𝑗 ∈ ∅ (𝐵𝐶) = 0
2 telfsumo.3 . . . . . . . 8 (𝑘 = 𝑀𝐴 = 𝐷)
32eleq1d 2818 . . . . . . 7 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
4 telfsumo.6 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
54ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
6 telfsumo.5 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
7 eluzfz1 13435 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
86, 7syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
93, 5, 8rspcdva 3574 . . . . . 6 (𝜑𝐷 ∈ ℂ)
109adantr 480 . . . . 5 ((𝜑𝑁 = 𝑀) → 𝐷 ∈ ℂ)
1110subidd 11469 . . . 4 ((𝜑𝑁 = 𝑀) → (𝐷𝐷) = 0)
121, 11eqtr4id 2787 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ ∅ (𝐵𝐶) = (𝐷𝐷))
13 oveq2 7362 . . . . . 6 (𝑁 = 𝑀 → (𝑀..^𝑁) = (𝑀..^𝑀))
1413adantl 481 . . . . 5 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀))
15 fzo0 13587 . . . . 5 (𝑀..^𝑀) = ∅
1614, 15eqtrdi 2784 . . . 4 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = ∅)
1716sumeq1d 15611 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = Σ𝑗 ∈ ∅ (𝐵𝐶))
18 eqeq1 2737 . . . . . . . 8 (𝑘 = 𝑁 → (𝑘 = 𝑀𝑁 = 𝑀))
19 telfsumo.4 . . . . . . . . 9 (𝑘 = 𝑁𝐴 = 𝐸)
2019eqeq1d 2735 . . . . . . . 8 (𝑘 = 𝑁 → (𝐴 = 𝐷𝐸 = 𝐷))
2118, 20imbi12d 344 . . . . . . 7 (𝑘 = 𝑁 → ((𝑘 = 𝑀𝐴 = 𝐷) ↔ (𝑁 = 𝑀𝐸 = 𝐷)))
2221, 2vtoclg 3508 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝐸 = 𝐷))
2322imp 406 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝐸 = 𝐷)
246, 23sylan 580 . . . 4 ((𝜑𝑁 = 𝑀) → 𝐸 = 𝐷)
2524oveq2d 7370 . . 3 ((𝜑𝑁 = 𝑀) → (𝐷𝐸) = (𝐷𝐷))
2612, 17, 253eqtr4d 2778 . 2 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
27 fzofi 13885 . . . . . 6 (𝑀..^𝑁) ∈ Fin
2827a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
29 telfsumo.1 . . . . . . 7 (𝑘 = 𝑗𝐴 = 𝐵)
3029eleq1d 2818 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
315adantr 480 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
32 elfzofz 13579 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
3332adantl 481 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...𝑁))
3430, 31, 33rspcdva 3574 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
35 telfsumo.2 . . . . . . 7 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
3635eleq1d 2818 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
37 fzofzp1 13668 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
3837adantl 481 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...𝑁))
3936, 31, 38rspcdva 3574 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
4028, 34, 39fsumsub 15699 . . . 4 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4140adantr 480 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4229cbvsumv 15607 . . . . 5 Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐵
43 eluzel2 12745 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
446, 43syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
45 eluzp1m1 12766 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
4644, 45sylan 580 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
47 eluzelz 12750 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
486, 47syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
4948adantr 480 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ ℤ)
50 fzoval 13564 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
5149, 50syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
52 fzossfz 13582 . . . . . . . . . 10 (𝑀..^𝑁) ⊆ (𝑀...𝑁)
5351, 52eqsstrrdi 3976 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
5453sselda 3930 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...𝑁))
554adantlr 715 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
5654, 55syldan 591 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
5746, 56, 2fsum1p 15664 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
5851sumeq1d 15611 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴)
59 fzoval 13564 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6049, 59syl 17 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6160sumeq1d 15611 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
6261oveq2d 7370 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
6357, 58, 623eqtr4d 2778 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
6442, 63eqtr3id 2782 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐵 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
65 simpr 484 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
66 fzp1ss 13479 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6744, 66syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6867sselda 3930 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
6968, 4syldan 591 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7069adantlr 715 . . . . . 6 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7165, 70, 19fsumm1 15662 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
72 1zzd 12511 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
7344peano2zd 12588 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
7472, 73, 48, 69, 35fsumshftm 15692 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶)
7544zcnd 12586 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
76 ax-1cn 11073 . . . . . . . . . . 11 1 ∈ ℂ
77 pncan 11375 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7875, 76, 77sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7978oveq1d 7369 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1)))
8048, 50syl 17 . . . . . . . . 9 (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
8179, 80eqtr4d 2771 . . . . . . . 8 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀..^𝑁))
8281sumeq1d 15611 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8374, 82eqtrd 2768 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8483adantr 480 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8548, 59syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
8685sumeq1d 15611 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
8786oveq1d 7369 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
88 fzofi 13885 . . . . . . . . . 10 ((𝑀 + 1)..^𝑁) ∈ Fin
8988a1i 11 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) ∈ Fin)
90 elfzofz 13579 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑘 ∈ ((𝑀 + 1)...𝑁))
9190, 69sylan2 593 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝐴 ∈ ℂ)
9289, 91fsumcl 15644 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 ∈ ℂ)
9319eleq1d 2818 . . . . . . . . 9 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
94 eluzfz2 13436 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
956, 94syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (𝑀...𝑁))
9693, 5, 95rspcdva 3574 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
9792, 96addcomd 11324 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9887, 97eqtr3d 2770 . . . . . 6 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9998adantr 480 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10071, 84, 993eqtr3d 2776 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐶 = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10164, 100oveq12d 7372 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶) = ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)))
1029, 96, 92pnpcan2d 11519 . . . 4 (𝜑 → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
103102adantr 480 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
10441, 101, 1033eqtrd 2772 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
105 uzp1 12777 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
1066, 105syl 17 . 2 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
10726, 104, 106mpjaodan 960 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3048  wss 3898  c0 4282  cfv 6488  (class class class)co 7354  Fincfn 8877  cc 11013  0cc0 11015  1c1 11016   + caddc 11018  cmin 11353  cz 12477  cuz 12740  ...cfz 13411  ..^cfzo 13558  Σcsu 15597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-sum 15598
This theorem is referenced by:  telfsumo2  15714  telfsum  15715  geoserg  15777  dchrisumlem2  27431  stirlinglem12  46210
  Copyright terms: Public domain W3C validator