Proof of Theorem telfsumo
| Step | Hyp | Ref
| Expression |
| 1 | | sum0 15757 |
. . . 4
⊢
Σ𝑗 ∈
∅ (𝐵 − 𝐶) = 0 |
| 2 | | telfsumo.3 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
| 3 | 2 | eleq1d 2826 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ)) |
| 4 | | telfsumo.6 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| 5 | 4 | ralrimiva 3146 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 6 | | telfsumo.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 7 | | eluzfz1 13571 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 9 | 3, 5, 8 | rspcdva 3623 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 10 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → 𝐷 ∈ ℂ) |
| 11 | 10 | subidd 11608 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → (𝐷 − 𝐷) = 0) |
| 12 | 1, 11 | eqtr4id 2796 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → Σ𝑗 ∈ ∅ (𝐵 − 𝐶) = (𝐷 − 𝐷)) |
| 13 | | oveq2 7439 |
. . . . . 6
⊢ (𝑁 = 𝑀 → (𝑀..^𝑁) = (𝑀..^𝑀)) |
| 14 | 13 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀)) |
| 15 | | fzo0 13723 |
. . . . 5
⊢ (𝑀..^𝑀) = ∅ |
| 16 | 14, 15 | eqtrdi 2793 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → (𝑀..^𝑁) = ∅) |
| 17 | 16 | sumeq1d 15736 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = Σ𝑗 ∈ ∅ (𝐵 − 𝐶)) |
| 18 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → (𝑘 = 𝑀 ↔ 𝑁 = 𝑀)) |
| 19 | | telfsumo.4 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → 𝐴 = 𝐸) |
| 20 | 19 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑘 = 𝑁 → (𝐴 = 𝐷 ↔ 𝐸 = 𝐷)) |
| 21 | 18, 20 | imbi12d 344 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → ((𝑘 = 𝑀 → 𝐴 = 𝐷) ↔ (𝑁 = 𝑀 → 𝐸 = 𝐷))) |
| 22 | 21, 2 | vtoclg 3554 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 = 𝑀 → 𝐸 = 𝐷)) |
| 23 | 22 | imp 406 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → 𝐸 = 𝐷) |
| 24 | 6, 23 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → 𝐸 = 𝐷) |
| 25 | 24 | oveq2d 7447 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → (𝐷 − 𝐸) = (𝐷 − 𝐷)) |
| 26 | 12, 17, 25 | 3eqtr4d 2787 |
. 2
⊢ ((𝜑 ∧ 𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
| 27 | | fzofi 14015 |
. . . . . 6
⊢ (𝑀..^𝑁) ∈ Fin |
| 28 | 27 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑀..^𝑁) ∈ Fin) |
| 29 | | telfsumo.1 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → 𝐴 = 𝐵) |
| 30 | 29 | eleq1d 2826 |
. . . . . 6
⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 31 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 32 | | elfzofz 13715 |
. . . . . . 7
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁)) |
| 33 | 32 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...𝑁)) |
| 34 | 30, 31, 33 | rspcdva 3623 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ) |
| 35 | | telfsumo.2 |
. . . . . . 7
⊢ (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶) |
| 36 | 35 | eleq1d 2826 |
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
| 37 | | fzofzp1 13803 |
. . . . . . 7
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) |
| 38 | 37 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...𝑁)) |
| 39 | 36, 31, 38 | rspcdva 3623 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ) |
| 40 | 28, 34, 39 | fsumsub 15824 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶)) |
| 41 | 40 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶)) |
| 42 | 29 | cbvsumv 15732 |
. . . . 5
⊢
Σ𝑘 ∈
(𝑀..^𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐵 |
| 43 | | eluzel2 12883 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 44 | 6, 43 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 45 | | eluzp1m1 12904 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| 46 | 44, 45 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑀)) |
| 47 | | eluzelz 12888 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 48 | 6, 47 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ ℤ) |
| 50 | | fzoval 13700 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 52 | | fzossfz 13718 |
. . . . . . . . . 10
⊢ (𝑀..^𝑁) ⊆ (𝑀...𝑁) |
| 53 | 51, 52 | eqsstrrdi 4029 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁)) |
| 54 | 53 | sselda 3983 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...𝑁)) |
| 55 | 4 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| 56 | 54, 55 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ) |
| 57 | 46, 56, 2 | fsum1p 15789 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)) |
| 58 | 51 | sumeq1d 15736 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴) |
| 59 | | fzoval 13700 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1))) |
| 60 | 49, 59 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1))) |
| 61 | 60 | sumeq1d 15736 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴) |
| 62 | 61 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)) |
| 63 | 57, 58, 62 | 3eqtr4d 2787 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) |
| 64 | 42, 63 | eqtr3id 2791 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐵 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) |
| 65 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
| 66 | | fzp1ss 13615 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 67 | 44, 66 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 68 | 67 | sselda 3983 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
| 69 | 68, 4 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ) |
| 70 | 69 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ) |
| 71 | 65, 70, 19 | fsumm1 15787 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸)) |
| 72 | | 1zzd 12648 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
| 73 | 44 | peano2zd 12725 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 74 | 72, 73, 48, 69, 35 | fsumshftm 15817 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶) |
| 75 | 44 | zcnd 12723 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 76 | | ax-1cn 11213 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
| 77 | | pncan 11514 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 + 1)
− 1) = 𝑀) |
| 78 | 75, 76, 77 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
| 79 | 78 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1))) |
| 80 | 48, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 81 | 79, 80 | eqtr4d 2780 |
. . . . . . . 8
⊢ (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀..^𝑁)) |
| 82 | 81 | sumeq1d 15736 |
. . . . . . 7
⊢ (𝜑 → Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶) |
| 83 | 74, 82 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶) |
| 84 | 83 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶) |
| 85 | 48, 59 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1))) |
| 86 | 85 | sumeq1d 15736 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴) |
| 87 | 86 | oveq1d 7446 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸)) |
| 88 | | fzofi 14015 |
. . . . . . . . . 10
⊢ ((𝑀 + 1)..^𝑁) ∈ Fin |
| 89 | 88 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 + 1)..^𝑁) ∈ Fin) |
| 90 | | elfzofz 13715 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑘 ∈ ((𝑀 + 1)...𝑁)) |
| 91 | 90, 69 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝐴 ∈ ℂ) |
| 92 | 89, 91 | fsumcl 15769 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 ∈ ℂ) |
| 93 | 19 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
| 94 | | eluzfz2 13572 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 95 | 6, 94 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 96 | 93, 5, 95 | rspcdva 3623 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 97 | 92, 96 | addcomd 11463 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) |
| 98 | 87, 97 | eqtr3d 2779 |
. . . . . 6
⊢ (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) |
| 99 | 98 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) |
| 100 | 71, 84, 99 | 3eqtr3d 2785 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐶 = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) |
| 101 | 64, 100 | oveq12d 7449 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶) = ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))) |
| 102 | 9, 96, 92 | pnpcan2d 11658 |
. . . 4
⊢ (𝜑 → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷 − 𝐸)) |
| 103 | 102 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷 − 𝐸)) |
| 104 | 41, 101, 103 | 3eqtrd 2781 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |
| 105 | | uzp1 12919 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 106 | 6, 105 | syl 17 |
. 2
⊢ (𝜑 → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 107 | 26, 104, 106 | mpjaodan 961 |
1
⊢ (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 − 𝐶) = (𝐷 − 𝐸)) |