MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telfsumo Structured version   Visualization version   GIF version

Theorem telfsumo 15694
Description: Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsumo.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsumo.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsumo.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsumo.4 (𝑘 = 𝑁𝐴 = 𝐸)
telfsumo.5 (𝜑𝑁 ∈ (ℤ𝑀))
telfsumo.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsumo (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsumo
StepHypRef Expression
1 sum0 15613 . . . 4 Σ𝑗 ∈ ∅ (𝐵𝐶) = 0
2 telfsumo.3 . . . . . . . 8 (𝑘 = 𝑀𝐴 = 𝐷)
32eleq1d 2823 . . . . . . 7 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
4 telfsumo.6 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
54ralrimiva 3144 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
6 telfsumo.5 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
7 eluzfz1 13455 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
86, 7syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
93, 5, 8rspcdva 3585 . . . . . 6 (𝜑𝐷 ∈ ℂ)
109adantr 482 . . . . 5 ((𝜑𝑁 = 𝑀) → 𝐷 ∈ ℂ)
1110subidd 11507 . . . 4 ((𝜑𝑁 = 𝑀) → (𝐷𝐷) = 0)
121, 11eqtr4id 2796 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ ∅ (𝐵𝐶) = (𝐷𝐷))
13 oveq2 7370 . . . . . 6 (𝑁 = 𝑀 → (𝑀..^𝑁) = (𝑀..^𝑀))
1413adantl 483 . . . . 5 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀))
15 fzo0 13603 . . . . 5 (𝑀..^𝑀) = ∅
1614, 15eqtrdi 2793 . . . 4 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = ∅)
1716sumeq1d 15593 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = Σ𝑗 ∈ ∅ (𝐵𝐶))
18 eqeq1 2741 . . . . . . . 8 (𝑘 = 𝑁 → (𝑘 = 𝑀𝑁 = 𝑀))
19 telfsumo.4 . . . . . . . . 9 (𝑘 = 𝑁𝐴 = 𝐸)
2019eqeq1d 2739 . . . . . . . 8 (𝑘 = 𝑁 → (𝐴 = 𝐷𝐸 = 𝐷))
2118, 20imbi12d 345 . . . . . . 7 (𝑘 = 𝑁 → ((𝑘 = 𝑀𝐴 = 𝐷) ↔ (𝑁 = 𝑀𝐸 = 𝐷)))
2221, 2vtoclg 3528 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝐸 = 𝐷))
2322imp 408 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝐸 = 𝐷)
246, 23sylan 581 . . . 4 ((𝜑𝑁 = 𝑀) → 𝐸 = 𝐷)
2524oveq2d 7378 . . 3 ((𝜑𝑁 = 𝑀) → (𝐷𝐸) = (𝐷𝐷))
2612, 17, 253eqtr4d 2787 . 2 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
27 fzofi 13886 . . . . . 6 (𝑀..^𝑁) ∈ Fin
2827a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
29 telfsumo.1 . . . . . . 7 (𝑘 = 𝑗𝐴 = 𝐵)
3029eleq1d 2823 . . . . . 6 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
315adantr 482 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
32 elfzofz 13595 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
3332adantl 483 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (𝑀...𝑁))
3430, 31, 33rspcdva 3585 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
35 telfsumo.2 . . . . . . 7 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
3635eleq1d 2823 . . . . . 6 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
37 fzofzp1 13676 . . . . . . 7 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
3837adantl 483 . . . . . 6 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...𝑁))
3936, 31, 38rspcdva 3585 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
4028, 34, 39fsumsub 15680 . . . 4 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4140adantr 482 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶))
4229cbvsumv 15588 . . . . 5 Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐵
43 eluzel2 12775 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
446, 43syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
45 eluzp1m1 12796 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
4644, 45sylan 581 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
47 eluzelz 12780 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
486, 47syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
4948adantr 482 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ ℤ)
50 fzoval 13580 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
5149, 50syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
52 fzossfz 13598 . . . . . . . . . 10 (𝑀..^𝑁) ⊆ (𝑀...𝑁)
5351, 52eqsstrrdi 4004 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀...(𝑁 − 1)) ⊆ (𝑀...𝑁))
5453sselda 3949 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...𝑁))
554adantlr 714 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
5654, 55syldan 592 . . . . . . 7 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
5746, 56, 2fsum1p 15645 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
5851sumeq1d 15593 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴)
59 fzoval 13580 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6049, 59syl 17 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
6160sumeq1d 15593 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
6261oveq2d 7378 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴))
6357, 58, 623eqtr4d 2787 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
6442, 63eqtr3id 2791 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐵 = (𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
65 simpr 486 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
66 fzp1ss 13499 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6744, 66syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
6867sselda 3949 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
6968, 4syldan 592 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7069adantlr 714 . . . . . 6 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
7165, 70, 19fsumm1 15643 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
72 1zzd 12541 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
7344peano2zd 12617 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
7472, 73, 48, 69, 35fsumshftm 15673 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶)
7544zcnd 12615 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
76 ax-1cn 11116 . . . . . . . . . . 11 1 ∈ ℂ
77 pncan 11414 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
7875, 76, 77sylancl 587 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
7978oveq1d 7377 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1)))
8048, 50syl 17 . . . . . . . . 9 (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
8179, 80eqtr4d 2780 . . . . . . . 8 (𝜑 → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀..^𝑁))
8281sumeq1d 15593 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))𝐶 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8374, 82eqtrd 2777 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8483adantr 482 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴 = Σ𝑗 ∈ (𝑀..^𝑁)𝐶)
8548, 59syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
8685sumeq1d 15593 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴)
8786oveq1d 7377 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸))
88 fzofi 13886 . . . . . . . . . 10 ((𝑀 + 1)..^𝑁) ∈ Fin
8988a1i 11 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)..^𝑁) ∈ Fin)
90 elfzofz 13595 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)..^𝑁) → 𝑘 ∈ ((𝑀 + 1)...𝑁))
9190, 69sylan2 594 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝐴 ∈ ℂ)
9289, 91fsumcl 15625 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 ∈ ℂ)
9319eleq1d 2823 . . . . . . . . 9 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
94 eluzfz2 13456 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
956, 94syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (𝑀...𝑁))
9693, 5, 95rspcdva 3585 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
9792, 96addcomd 11364 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9887, 97eqtr3d 2779 . . . . . 6 (𝜑 → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
9998adantr 482 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))𝐴 + 𝐸) = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10071, 84, 993eqtr3d 2785 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)𝐶 = (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴))
10164, 100oveq12d 7380 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)𝐵 − Σ𝑗 ∈ (𝑀..^𝑁)𝐶) = ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)))
1029, 96, 92pnpcan2d 11557 . . . 4 (𝜑 → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
103102adantr 482 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐷 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴) − (𝐸 + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)𝐴)) = (𝐷𝐸))
10441, 101, 1033eqtrd 2781 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
105 uzp1 12811 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
1066, 105syl 17 . 2 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
10726, 104, 106mpjaodan 958 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵𝐶) = (𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3065  wss 3915  c0 4287  cfv 6501  (class class class)co 7362  Fincfn 8890  cc 11056  0cc0 11058  1c1 11059   + caddc 11061  cmin 11392  cz 12506  cuz 12770  ...cfz 13431  ..^cfzo 13574  Σcsu 15577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fz 13432  df-fzo 13575  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-sum 15578
This theorem is referenced by:  telfsumo2  15695  telfsum  15696  geoserg  15758  dchrisumlem2  26854  stirlinglem12  44400
  Copyright terms: Public domain W3C validator