| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esplyfval | Structured version Visualization version GIF version | ||
| Description: The 𝐾-th elementary polynomial for a given index 𝐼 of variables and base ring 𝑅. (Contributed by Thierry Arnoux, 18-Jan-2026.) |
| Ref | Expression |
|---|---|
| esplyval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| esplyval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| esplyval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| esplyfval.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| esplyfval | ⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((♯‘𝑐) = 𝑘 ↔ (♯‘𝑐) = 𝐾)) | |
| 2 | 1 | rabbidv 3399 | . . . . 5 ⊢ (𝑘 = 𝐾 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘} = {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) |
| 3 | 2 | imaeq2d 6005 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}) = ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 4 | 3 | fveq2d 6820 | . . 3 ⊢ (𝑘 = 𝐾 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})) = ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) |
| 5 | 4 | coeq2d 5799 | . 2 ⊢ (𝑘 = 𝐾 → ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 6 | esplyval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} | |
| 7 | esplyval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 8 | esplyval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 9 | 6, 7, 8 | esplyval 33553 | . 2 ⊢ (𝜑 → (𝐼eSymPoly𝑅) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))))) |
| 10 | esplyfval.k | . 2 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 11 | fvexd 6831 | . . 3 ⊢ (𝜑 → (ℤRHom‘𝑅) ∈ V) | |
| 12 | fvexd 6831 | . . 3 ⊢ (𝜑 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∈ V) | |
| 13 | 11, 12 | coexd 7855 | . 2 ⊢ (𝜑 → ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) ∈ V) |
| 14 | 5, 9, 10, 13 | fvmptd4 6947 | 1 ⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3392 Vcvv 3433 𝒫 cpw 4547 class class class wbr 5088 “ cima 5616 ∘ ccom 5617 ‘cfv 6476 (class class class)co 7340 ↑m cmap 8744 finSupp cfsupp 9239 0cc0 10997 ℕ0cn0 12372 ♯chash 14225 ℤRHomczrh 21390 𝟭cind 32786 eSymPolycesply 33547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-1cn 11055 ax-addcl 11057 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-2nd 7916 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-nn 12117 df-n0 12373 df-esply 33549 |
| This theorem is referenced by: esplympl 33556 esplymhp 33557 esplyfv1 33558 esplyfv 33559 |
| Copyright terms: Public domain | W3C validator |