| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esplyfval | Structured version Visualization version GIF version | ||
| Description: The 𝐾-th elementary polynomial for a given index 𝐼 of variables and base ring 𝑅. (Contributed by Thierry Arnoux, 18-Jan-2026.) |
| Ref | Expression |
|---|---|
| esplyval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} |
| esplyval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| esplyval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| esplyfval.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| esplyfval | ⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2743 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((♯‘𝑐) = 𝑘 ↔ (♯‘𝑐) = 𝐾)) | |
| 2 | 1 | rabbidv 3402 | . . . . 5 ⊢ (𝑘 = 𝐾 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘} = {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) |
| 3 | 2 | imaeq2d 6014 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}) = ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 4 | 3 | fveq2d 6832 | . . 3 ⊢ (𝑘 = 𝐾 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘})) = ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) |
| 5 | 4 | coeq2d 5807 | . 2 ⊢ (𝑘 = 𝐾 → ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 6 | esplyval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ ℎ finSupp 0} | |
| 7 | esplyval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 8 | esplyval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 9 | 6, 7, 8 | esplyval 33592 | . 2 ⊢ (𝜑 → (𝐼eSymPoly𝑅) = (𝑘 ∈ ℕ0 ↦ ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝑘}))))) |
| 10 | esplyfval.k | . 2 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 11 | fvexd 6843 | . . 3 ⊢ (𝜑 → (ℤRHom‘𝑅) ∈ V) | |
| 12 | fvexd 6843 | . . 3 ⊢ (𝜑 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) ∈ V) | |
| 13 | 11, 12 | coexd 7867 | . 2 ⊢ (𝜑 → ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) ∈ V) |
| 14 | 5, 9, 10, 13 | fvmptd4 6959 | 1 ⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 𝒫 cpw 4549 class class class wbr 5093 “ cima 5622 ∘ ccom 5623 ‘cfv 6487 (class class class)co 7352 ↑m cmap 8756 finSupp cfsupp 9251 0cc0 11012 ℕ0cn0 12387 ♯chash 14243 ℤRHomczrh 21442 𝟭cind 32838 eSymPolycesply 33586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-1cn 11070 ax-addcl 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12132 df-n0 12388 df-esply 33588 |
| This theorem is referenced by: esplympl 33595 esplymhp 33596 esplyfv1 33597 esplyfv 33598 |
| Copyright terms: Public domain | W3C validator |