MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coef2 Structured version   Visualization version   GIF version

Theorem coef2 26112
Description: The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coef2 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → 𝐴:ℕ0𝑆)

Proof of Theorem coef2
StepHypRef Expression
1 dgrval.1 . . . 4 𝐴 = (coeff‘𝐹)
21coef 26111 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
32adantr 480 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → 𝐴:ℕ0⟶(𝑆 ∪ {0}))
4 simpr 484 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → 0 ∈ 𝑆)
54snssd 4769 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → {0} ⊆ 𝑆)
6 ssequn2 4148 . . . 4 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
75, 6sylib 218 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (𝑆 ∪ {0}) = 𝑆)
87feq3d 6655 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (𝐴:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝐴:ℕ0𝑆))
93, 8mpbid 232 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → 𝐴:ℕ0𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3909  wss 3911  {csn 4585  wf 6495  cfv 6499  0cc0 11044  0cn0 12418  Polycply 26065  coeffccoe 26067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25547  df-ply 26069  df-coe 26071
This theorem is referenced by:  coef3  26113  plyrecj  26163  dvply2g  26168  dvply2gOLD  26169  plydivlem4  26180  elqaalem1  26203  elqaalem3  26205  aareccl  26210  aannenlem1  26212  aannenlem2  26213  aalioulem1  26216  plymulx0  34511  signsply0  34515  mpaaeu  43112  cnsrplycl  43129  elaa2lem  46204  etransclem46  46251  etransclem47  46252  etransclem48  46253
  Copyright terms: Public domain W3C validator