| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumzsubmcl | Structured version Visualization version GIF version | ||
| Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumzsubmcl.0 | ⊢ 0 = (0g‘𝐺) |
| gsumzsubmcl.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| gsumzsubmcl.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| gsumzsubmcl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumzsubmcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
| gsumzsubmcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| gsumzsubmcl.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| gsumzsubmcl.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumzsubmcl | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 2 | eqid 2729 | . . 3 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
| 3 | eqid 2729 | . . 3 ⊢ (Cntz‘(𝐺 ↾s 𝑆)) = (Cntz‘(𝐺 ↾s 𝑆)) | |
| 4 | gsumzsubmcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 6 | 5 | submmnd 18722 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 ↾s 𝑆) ∈ Mnd) |
| 8 | gsumzsubmcl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | gsumzsubmcl.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 10 | 5 | submbas 18723 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 11 | 4, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 12 | 11 | feq3d 6655 | . . . 4 ⊢ (𝜑 → (𝐹:𝐴⟶𝑆 ↔ 𝐹:𝐴⟶(Base‘(𝐺 ↾s 𝑆)))) |
| 13 | 9, 12 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶(Base‘(𝐺 ↾s 𝑆))) |
| 14 | gsumzsubmcl.c | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
| 15 | 9 | frnd 6678 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑆) |
| 16 | 14, 15 | ssind 4200 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ((𝑍‘ran 𝐹) ∩ 𝑆)) |
| 17 | gsumzsubmcl.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 18 | 5, 17, 3 | resscntz 19247 | . . . . 5 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ ran 𝐹 ⊆ 𝑆) → ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆)) |
| 19 | 4, 15, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆)) |
| 20 | 16, 19 | sseqtrrd 3981 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹)) |
| 21 | gsumzsubmcl.w | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 22 | gsumzsubmcl.0 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 23 | 5, 22 | subm0 18724 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
| 24 | 4, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 0 = (0g‘(𝐺 ↾s 𝑆))) |
| 25 | 21, 24 | breqtrd 5128 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘(𝐺 ↾s 𝑆))) |
| 26 | 1, 2, 3, 7, 8, 13, 20, 25 | gsumzcl 19825 | . 2 ⊢ (𝜑 → ((𝐺 ↾s 𝑆) Σg 𝐹) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 27 | 8, 4, 9, 5 | gsumsubm 18744 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 ↾s 𝑆) Σg 𝐹)) |
| 28 | 26, 27, 11 | 3eltr4d 2843 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 class class class wbr 5102 ran crn 5632 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 finSupp cfsupp 9288 Basecbs 17155 ↾s cress 17176 0gc0g 17378 Σg cgsu 17379 Mndcmnd 18643 SubMndcsubmnd 18691 Cntzccntz 19229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-gsum 17381 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-cntz 19231 |
| This theorem is referenced by: gsumsubmcl 19833 gsumzadd 19836 dprdfadd 19936 dprdfeq0 19938 dprdlub 19942 |
| Copyright terms: Public domain | W3C validator |