![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumzsubmcl | Structured version Visualization version GIF version |
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
Ref | Expression |
---|---|
gsumzsubmcl.0 | β’ 0 = (0gβπΊ) |
gsumzsubmcl.z | β’ π = (CntzβπΊ) |
gsumzsubmcl.g | β’ (π β πΊ β Mnd) |
gsumzsubmcl.a | β’ (π β π΄ β π) |
gsumzsubmcl.s | β’ (π β π β (SubMndβπΊ)) |
gsumzsubmcl.f | β’ (π β πΉ:π΄βΆπ) |
gsumzsubmcl.c | β’ (π β ran πΉ β (πβran πΉ)) |
gsumzsubmcl.w | β’ (π β πΉ finSupp 0 ) |
Ref | Expression |
---|---|
gsumzsubmcl | β’ (π β (πΊ Ξ£g πΉ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (Baseβ(πΊ βΎs π)) = (Baseβ(πΊ βΎs π)) | |
2 | eqid 2732 | . . 3 β’ (0gβ(πΊ βΎs π)) = (0gβ(πΊ βΎs π)) | |
3 | eqid 2732 | . . 3 β’ (Cntzβ(πΊ βΎs π)) = (Cntzβ(πΊ βΎs π)) | |
4 | gsumzsubmcl.s | . . . 4 β’ (π β π β (SubMndβπΊ)) | |
5 | eqid 2732 | . . . . 5 β’ (πΊ βΎs π) = (πΊ βΎs π) | |
6 | 5 | submmnd 18693 | . . . 4 β’ (π β (SubMndβπΊ) β (πΊ βΎs π) β Mnd) |
7 | 4, 6 | syl 17 | . . 3 β’ (π β (πΊ βΎs π) β Mnd) |
8 | gsumzsubmcl.a | . . 3 β’ (π β π΄ β π) | |
9 | gsumzsubmcl.f | . . . 4 β’ (π β πΉ:π΄βΆπ) | |
10 | 5 | submbas 18694 | . . . . . 6 β’ (π β (SubMndβπΊ) β π = (Baseβ(πΊ βΎs π))) |
11 | 4, 10 | syl 17 | . . . . 5 β’ (π β π = (Baseβ(πΊ βΎs π))) |
12 | 11 | feq3d 6704 | . . . 4 β’ (π β (πΉ:π΄βΆπ β πΉ:π΄βΆ(Baseβ(πΊ βΎs π)))) |
13 | 9, 12 | mpbid 231 | . . 3 β’ (π β πΉ:π΄βΆ(Baseβ(πΊ βΎs π))) |
14 | gsumzsubmcl.c | . . . . 5 β’ (π β ran πΉ β (πβran πΉ)) | |
15 | 9 | frnd 6725 | . . . . 5 β’ (π β ran πΉ β π) |
16 | 14, 15 | ssind 4232 | . . . 4 β’ (π β ran πΉ β ((πβran πΉ) β© π)) |
17 | gsumzsubmcl.z | . . . . . 6 β’ π = (CntzβπΊ) | |
18 | 5, 17, 3 | resscntz 19196 | . . . . 5 β’ ((π β (SubMndβπΊ) β§ ran πΉ β π) β ((Cntzβ(πΊ βΎs π))βran πΉ) = ((πβran πΉ) β© π)) |
19 | 4, 15, 18 | syl2anc 584 | . . . 4 β’ (π β ((Cntzβ(πΊ βΎs π))βran πΉ) = ((πβran πΉ) β© π)) |
20 | 16, 19 | sseqtrrd 4023 | . . 3 β’ (π β ran πΉ β ((Cntzβ(πΊ βΎs π))βran πΉ)) |
21 | gsumzsubmcl.w | . . . 4 β’ (π β πΉ finSupp 0 ) | |
22 | gsumzsubmcl.0 | . . . . . 6 β’ 0 = (0gβπΊ) | |
23 | 5, 22 | subm0 18695 | . . . . 5 β’ (π β (SubMndβπΊ) β 0 = (0gβ(πΊ βΎs π))) |
24 | 4, 23 | syl 17 | . . . 4 β’ (π β 0 = (0gβ(πΊ βΎs π))) |
25 | 21, 24 | breqtrd 5174 | . . 3 β’ (π β πΉ finSupp (0gβ(πΊ βΎs π))) |
26 | 1, 2, 3, 7, 8, 13, 20, 25 | gsumzcl 19778 | . 2 β’ (π β ((πΊ βΎs π) Ξ£g πΉ) β (Baseβ(πΊ βΎs π))) |
27 | 8, 4, 9, 5 | gsumsubm 18715 | . 2 β’ (π β (πΊ Ξ£g πΉ) = ((πΊ βΎs π) Ξ£g πΉ)) |
28 | 26, 27, 11 | 3eltr4d 2848 | 1 β’ (π β (πΊ Ξ£g πΉ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β© cin 3947 β wss 3948 class class class wbr 5148 ran crn 5677 βΆwf 6539 βcfv 6543 (class class class)co 7408 finSupp cfsupp 9360 Basecbs 17143 βΎs cress 17172 0gc0g 17384 Ξ£g cgsu 17385 Mndcmnd 18624 SubMndcsubmnd 18669 Cntzccntz 19178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-0g 17386 df-gsum 17387 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-cntz 19180 |
This theorem is referenced by: gsumsubmcl 19786 gsumzadd 19789 dprdfadd 19889 dprdfeq0 19891 dprdlub 19895 |
Copyright terms: Public domain | W3C validator |