Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumzsubmcl | Structured version Visualization version GIF version |
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
Ref | Expression |
---|---|
gsumzsubmcl.0 | ⊢ 0 = (0g‘𝐺) |
gsumzsubmcl.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzsubmcl.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzsubmcl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumzsubmcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
gsumzsubmcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
gsumzsubmcl.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
gsumzsubmcl.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumzsubmcl | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
3 | eqid 2738 | . . 3 ⊢ (Cntz‘(𝐺 ↾s 𝑆)) = (Cntz‘(𝐺 ↾s 𝑆)) | |
4 | gsumzsubmcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
5 | eqid 2738 | . . . . 5 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
6 | 5 | submmnd 18452 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝑆) ∈ Mnd) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 ↾s 𝑆) ∈ Mnd) |
8 | gsumzsubmcl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsumzsubmcl.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
10 | 5 | submbas 18453 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
11 | 4, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
12 | 11 | feq3d 6587 | . . . 4 ⊢ (𝜑 → (𝐹:𝐴⟶𝑆 ↔ 𝐹:𝐴⟶(Base‘(𝐺 ↾s 𝑆)))) |
13 | 9, 12 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶(Base‘(𝐺 ↾s 𝑆))) |
14 | gsumzsubmcl.c | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
15 | 9 | frnd 6608 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑆) |
16 | 14, 15 | ssind 4166 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ((𝑍‘ran 𝐹) ∩ 𝑆)) |
17 | gsumzsubmcl.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
18 | 5, 17, 3 | resscntz 18938 | . . . . 5 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ ran 𝐹 ⊆ 𝑆) → ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆)) |
19 | 4, 15, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆)) |
20 | 16, 19 | sseqtrrd 3962 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹)) |
21 | gsumzsubmcl.w | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
22 | gsumzsubmcl.0 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
23 | 5, 22 | subm0 18454 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
24 | 4, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 0 = (0g‘(𝐺 ↾s 𝑆))) |
25 | 21, 24 | breqtrd 5100 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘(𝐺 ↾s 𝑆))) |
26 | 1, 2, 3, 7, 8, 13, 20, 25 | gsumzcl 19512 | . 2 ⊢ (𝜑 → ((𝐺 ↾s 𝑆) Σg 𝐹) ∈ (Base‘(𝐺 ↾s 𝑆))) |
27 | 8, 4, 9, 5 | gsumsubm 18473 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 ↾s 𝑆) Σg 𝐹)) |
28 | 26, 27, 11 | 3eltr4d 2854 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 finSupp cfsupp 9128 Basecbs 16912 ↾s cress 16941 0gc0g 17150 Σg cgsu 17151 Mndcmnd 18385 SubMndcsubmnd 18429 Cntzccntz 18921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-gsum 17153 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-cntz 18923 |
This theorem is referenced by: gsumsubmcl 19520 gsumzadd 19523 dprdfadd 19623 dprdfeq0 19625 dprdlub 19629 |
Copyright terms: Public domain | W3C validator |