Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumzsubmcl | Structured version Visualization version GIF version |
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
Ref | Expression |
---|---|
gsumzsubmcl.0 | ⊢ 0 = (0g‘𝐺) |
gsumzsubmcl.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzsubmcl.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzsubmcl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumzsubmcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
gsumzsubmcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
gsumzsubmcl.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
gsumzsubmcl.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumzsubmcl | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
3 | eqid 2738 | . . 3 ⊢ (Cntz‘(𝐺 ↾s 𝑆)) = (Cntz‘(𝐺 ↾s 𝑆)) | |
4 | gsumzsubmcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
5 | eqid 2738 | . . . . 5 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
6 | 5 | submmnd 18441 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝑆) ∈ Mnd) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 ↾s 𝑆) ∈ Mnd) |
8 | gsumzsubmcl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsumzsubmcl.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
10 | 5 | submbas 18442 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
11 | 4, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
12 | 11 | feq3d 6581 | . . . 4 ⊢ (𝜑 → (𝐹:𝐴⟶𝑆 ↔ 𝐹:𝐴⟶(Base‘(𝐺 ↾s 𝑆)))) |
13 | 9, 12 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶(Base‘(𝐺 ↾s 𝑆))) |
14 | gsumzsubmcl.c | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
15 | 9 | frnd 6602 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑆) |
16 | 14, 15 | ssind 4168 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ((𝑍‘ran 𝐹) ∩ 𝑆)) |
17 | gsumzsubmcl.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
18 | 5, 17, 3 | resscntz 18927 | . . . . 5 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ ran 𝐹 ⊆ 𝑆) → ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆)) |
19 | 4, 15, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆)) |
20 | 16, 19 | sseqtrrd 3963 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹)) |
21 | gsumzsubmcl.w | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
22 | gsumzsubmcl.0 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
23 | 5, 22 | subm0 18443 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
24 | 4, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 0 = (0g‘(𝐺 ↾s 𝑆))) |
25 | 21, 24 | breqtrd 5101 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘(𝐺 ↾s 𝑆))) |
26 | 1, 2, 3, 7, 8, 13, 20, 25 | gsumzcl 19501 | . 2 ⊢ (𝜑 → ((𝐺 ↾s 𝑆) Σg 𝐹) ∈ (Base‘(𝐺 ↾s 𝑆))) |
27 | 8, 4, 9, 5 | gsumsubm 18462 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 ↾s 𝑆) Σg 𝐹)) |
28 | 26, 27, 11 | 3eltr4d 2854 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∩ cin 3887 ⊆ wss 3888 class class class wbr 5075 ran crn 5587 ⟶wf 6424 ‘cfv 6428 (class class class)co 7269 finSupp cfsupp 9117 Basecbs 16901 ↾s cress 16930 0gc0g 17139 Σg cgsu 17140 Mndcmnd 18374 SubMndcsubmnd 18418 Cntzccntz 18910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-se 5542 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-isom 6437 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-supp 7967 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8487 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-fsupp 9118 df-oi 9258 df-card 9686 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-2 12025 df-n0 12223 df-z 12309 df-uz 12572 df-fz 13229 df-fzo 13372 df-seq 13711 df-hash 14034 df-sets 16854 df-slot 16872 df-ndx 16884 df-base 16902 df-ress 16931 df-plusg 16964 df-0g 17141 df-gsum 17142 df-mgm 18315 df-sgrp 18364 df-mnd 18375 df-submnd 18420 df-cntz 18912 |
This theorem is referenced by: gsumsubmcl 19509 gsumzadd 19512 dprdfadd 19612 dprdfeq0 19614 dprdlub 19618 |
Copyright terms: Public domain | W3C validator |