Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumzsubmcl | Structured version Visualization version GIF version |
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.) |
Ref | Expression |
---|---|
gsumzsubmcl.0 | ⊢ 0 = (0g‘𝐺) |
gsumzsubmcl.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzsubmcl.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzsubmcl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumzsubmcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
gsumzsubmcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
gsumzsubmcl.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
gsumzsubmcl.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumzsubmcl | ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
3 | eqid 2738 | . . 3 ⊢ (Cntz‘(𝐺 ↾s 𝑆)) = (Cntz‘(𝐺 ↾s 𝑆)) | |
4 | gsumzsubmcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
5 | eqid 2738 | . . . . 5 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
6 | 5 | submmnd 18367 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (𝐺 ↾s 𝑆) ∈ Mnd) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 ↾s 𝑆) ∈ Mnd) |
8 | gsumzsubmcl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsumzsubmcl.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
10 | 5 | submbas 18368 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
11 | 4, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
12 | 11 | feq3d 6571 | . . . 4 ⊢ (𝜑 → (𝐹:𝐴⟶𝑆 ↔ 𝐹:𝐴⟶(Base‘(𝐺 ↾s 𝑆)))) |
13 | 9, 12 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶(Base‘(𝐺 ↾s 𝑆))) |
14 | gsumzsubmcl.c | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
15 | 9 | frnd 6592 | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑆) |
16 | 14, 15 | ssind 4163 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ((𝑍‘ran 𝐹) ∩ 𝑆)) |
17 | gsumzsubmcl.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝐺) | |
18 | 5, 17, 3 | resscntz 18853 | . . . . 5 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ ran 𝐹 ⊆ 𝑆) → ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆)) |
19 | 4, 15, 18 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆)) |
20 | 16, 19 | sseqtrrd 3958 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘(𝐺 ↾s 𝑆))‘ran 𝐹)) |
21 | gsumzsubmcl.w | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
22 | gsumzsubmcl.0 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
23 | 5, 22 | subm0 18369 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
24 | 4, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 0 = (0g‘(𝐺 ↾s 𝑆))) |
25 | 21, 24 | breqtrd 5096 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘(𝐺 ↾s 𝑆))) |
26 | 1, 2, 3, 7, 8, 13, 20, 25 | gsumzcl 19427 | . 2 ⊢ (𝜑 → ((𝐺 ↾s 𝑆) Σg 𝐹) ∈ (Base‘(𝐺 ↾s 𝑆))) |
27 | 8, 4, 9, 5 | gsumsubm 18388 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 ↾s 𝑆) Σg 𝐹)) |
28 | 26, 27, 11 | 3eltr4d 2854 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 finSupp cfsupp 9058 Basecbs 16840 ↾s cress 16867 0gc0g 17067 Σg cgsu 17068 Mndcmnd 18300 SubMndcsubmnd 18344 Cntzccntz 18836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cntz 18838 |
This theorem is referenced by: gsumsubmcl 19435 gsumzadd 19438 dprdfadd 19538 dprdfeq0 19540 dprdlub 19544 |
Copyright terms: Public domain | W3C validator |