MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzsubmcl Structured version   Visualization version   GIF version

Theorem gsumzsubmcl 19951
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
gsumzsubmcl.0 0 = (0g𝐺)
gsumzsubmcl.z 𝑍 = (Cntz‘𝐺)
gsumzsubmcl.g (𝜑𝐺 ∈ Mnd)
gsumzsubmcl.a (𝜑𝐴𝑉)
gsumzsubmcl.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
gsumzsubmcl.f (𝜑𝐹:𝐴𝑆)
gsumzsubmcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzsubmcl.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzsubmcl (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆)

Proof of Theorem gsumzsubmcl
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2735 . . 3 (0g‘(𝐺s 𝑆)) = (0g‘(𝐺s 𝑆))
3 eqid 2735 . . 3 (Cntz‘(𝐺s 𝑆)) = (Cntz‘(𝐺s 𝑆))
4 gsumzsubmcl.s . . . 4 (𝜑𝑆 ∈ (SubMnd‘𝐺))
5 eqid 2735 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
65submmnd 18839 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺s 𝑆) ∈ Mnd)
74, 6syl 17 . . 3 (𝜑 → (𝐺s 𝑆) ∈ Mnd)
8 gsumzsubmcl.a . . 3 (𝜑𝐴𝑉)
9 gsumzsubmcl.f . . . 4 (𝜑𝐹:𝐴𝑆)
105submbas 18840 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
114, 10syl 17 . . . . 5 (𝜑𝑆 = (Base‘(𝐺s 𝑆)))
1211feq3d 6724 . . . 4 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘(𝐺s 𝑆))))
139, 12mpbid 232 . . 3 (𝜑𝐹:𝐴⟶(Base‘(𝐺s 𝑆)))
14 gsumzsubmcl.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
159frnd 6745 . . . . 5 (𝜑 → ran 𝐹𝑆)
1614, 15ssind 4249 . . . 4 (𝜑 → ran 𝐹 ⊆ ((𝑍‘ran 𝐹) ∩ 𝑆))
17 gsumzsubmcl.z . . . . . 6 𝑍 = (Cntz‘𝐺)
185, 17, 3resscntz 19364 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ran 𝐹𝑆) → ((Cntz‘(𝐺s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆))
194, 15, 18syl2anc 584 . . . 4 (𝜑 → ((Cntz‘(𝐺s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆))
2016, 19sseqtrrd 4037 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘(𝐺s 𝑆))‘ran 𝐹))
21 gsumzsubmcl.w . . . 4 (𝜑𝐹 finSupp 0 )
22 gsumzsubmcl.0 . . . . . 6 0 = (0g𝐺)
235, 22subm0 18841 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 0 = (0g‘(𝐺s 𝑆)))
244, 23syl 17 . . . 4 (𝜑0 = (0g‘(𝐺s 𝑆)))
2521, 24breqtrd 5174 . . 3 (𝜑𝐹 finSupp (0g‘(𝐺s 𝑆)))
261, 2, 3, 7, 8, 13, 20, 25gsumzcl 19944 . 2 (𝜑 → ((𝐺s 𝑆) Σg 𝐹) ∈ (Base‘(𝐺s 𝑆)))
278, 4, 9, 5gsumsubm 18861 . 2 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺s 𝑆) Σg 𝐹))
2826, 27, 113eltr4d 2854 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cin 3962  wss 3963   class class class wbr 5148  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431   finSupp cfsupp 9399  Basecbs 17245  s cress 17274  0gc0g 17486   Σg cgsu 17487  Mndcmnd 18760  SubMndcsubmnd 18808  Cntzccntz 19346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-cntz 19348
This theorem is referenced by:  gsumsubmcl  19952  gsumzadd  19955  dprdfadd  20055  dprdfeq0  20057  dprdlub  20061
  Copyright terms: Public domain W3C validator