MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzsubmcl Structured version   Visualization version   GIF version

Theorem gsumzsubmcl 18671
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
gsumzsubmcl.0 0 = (0g𝐺)
gsumzsubmcl.z 𝑍 = (Cntz‘𝐺)
gsumzsubmcl.g (𝜑𝐺 ∈ Mnd)
gsumzsubmcl.a (𝜑𝐴𝑉)
gsumzsubmcl.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
gsumzsubmcl.f (𝜑𝐹:𝐴𝑆)
gsumzsubmcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzsubmcl.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzsubmcl (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆)

Proof of Theorem gsumzsubmcl
StepHypRef Expression
1 eqid 2825 . . 3 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2825 . . 3 (0g‘(𝐺s 𝑆)) = (0g‘(𝐺s 𝑆))
3 eqid 2825 . . 3 (Cntz‘(𝐺s 𝑆)) = (Cntz‘(𝐺s 𝑆))
4 gsumzsubmcl.s . . . 4 (𝜑𝑆 ∈ (SubMnd‘𝐺))
5 eqid 2825 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
65submmnd 17707 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺s 𝑆) ∈ Mnd)
74, 6syl 17 . . 3 (𝜑 → (𝐺s 𝑆) ∈ Mnd)
8 gsumzsubmcl.a . . 3 (𝜑𝐴𝑉)
9 gsumzsubmcl.f . . . 4 (𝜑𝐹:𝐴𝑆)
105submbas 17708 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
114, 10syl 17 . . . . 5 (𝜑𝑆 = (Base‘(𝐺s 𝑆)))
1211feq3d 6265 . . . 4 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘(𝐺s 𝑆))))
139, 12mpbid 224 . . 3 (𝜑𝐹:𝐴⟶(Base‘(𝐺s 𝑆)))
14 gsumzsubmcl.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
159frnd 6285 . . . . 5 (𝜑 → ran 𝐹𝑆)
1614, 15ssind 4061 . . . 4 (𝜑 → ran 𝐹 ⊆ ((𝑍‘ran 𝐹) ∩ 𝑆))
17 gsumzsubmcl.z . . . . . 6 𝑍 = (Cntz‘𝐺)
185, 17, 3resscntz 18114 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ran 𝐹𝑆) → ((Cntz‘(𝐺s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆))
194, 15, 18syl2anc 581 . . . 4 (𝜑 → ((Cntz‘(𝐺s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆))
2016, 19sseqtr4d 3867 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘(𝐺s 𝑆))‘ran 𝐹))
21 gsumzsubmcl.w . . . 4 (𝜑𝐹 finSupp 0 )
22 gsumzsubmcl.0 . . . . . 6 0 = (0g𝐺)
235, 22subm0 17709 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 0 = (0g‘(𝐺s 𝑆)))
244, 23syl 17 . . . 4 (𝜑0 = (0g‘(𝐺s 𝑆)))
2521, 24breqtrd 4899 . . 3 (𝜑𝐹 finSupp (0g‘(𝐺s 𝑆)))
261, 2, 3, 7, 8, 13, 20, 25gsumzcl 18665 . 2 (𝜑 → ((𝐺s 𝑆) Σg 𝐹) ∈ (Base‘(𝐺s 𝑆)))
278, 4, 9, 5gsumsubm 17726 . 2 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺s 𝑆) Σg 𝐹))
2826, 27, 113eltr4d 2921 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  cin 3797  wss 3798   class class class wbr 4873  ran crn 5343  wf 6119  cfv 6123  (class class class)co 6905   finSupp cfsupp 8544  Basecbs 16222  s cress 16223  0gc0g 16453   Σg cgsu 16454  Mndcmnd 17647  SubMndcsubmnd 17687  Cntzccntz 18098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-gsum 16456  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-cntz 18100
This theorem is referenced by:  gsumsubmcl  18672  gsumzadd  18675  dprdfadd  18773  dprdfeq0  18775  dprdlub  18779
  Copyright terms: Public domain W3C validator