MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5n0s Structured version   Visualization version   GIF version

Theorem peano5n0s 27935
Description: Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
peano5n0s (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5n0s
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-n0s 27931 . . 3 0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)
2 df-ima 5688 . . 3 (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) = ran (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)
31, 2eqtri 2758 . 2 0s = ran (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)
4 frfnom 8437 . . . . 5 (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω) Fn ω
54a1i 11 . . . 4 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω) Fn ω)
6 fveq2 6890 . . . . . . . 8 (𝑦 = ∅ → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘∅))
76eleq1d 2816 . . . . . . 7 (𝑦 = ∅ → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘∅) ∈ 𝐴))
8 fveq2 6890 . . . . . . . 8 (𝑦 = 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧))
98eleq1d 2816 . . . . . . 7 (𝑦 = 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) ∈ 𝐴))
10 fveq2 6890 . . . . . . . 8 (𝑦 = suc 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘suc 𝑧))
1110eleq1d 2816 . . . . . . 7 (𝑦 = suc 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘suc 𝑧) ∈ 𝐴))
12 fr0g 8438 . . . . . . . . 9 ( 0s𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘∅) = 0s )
13 id 22 . . . . . . . . 9 ( 0s𝐴 → 0s𝐴)
1412, 13eqeltrd 2831 . . . . . . . 8 ( 0s𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘∅) ∈ 𝐴)
1514adantr 479 . . . . . . 7 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘∅) ∈ 𝐴)
16 oveq1 7418 . . . . . . . . . . . . 13 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) → (𝑥 +s 1s ) = (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ))
1716eleq1d 2816 . . . . . . . . . . . 12 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) → ((𝑥 +s 1s ) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴))
1817rspccv 3608 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴))
1918adantl 480 . . . . . . . . . 10 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴))
2019imp 405 . . . . . . . . 9 ((( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) ∧ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴)
21 ovex 7444 . . . . . . . . . . 11 (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ) ∈ V
22 eqid 2730 . . . . . . . . . . . 12 (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω) = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)
23 oveq1 7418 . . . . . . . . . . . 12 (𝑦 = 𝑛 → (𝑦 +s 1s ) = (𝑛 +s 1s ))
24 oveq1 7418 . . . . . . . . . . . 12 (𝑦 = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) → (𝑦 +s 1s ) = (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ))
2522, 23, 24frsucmpt2 8442 . . . . . . . . . . 11 ((𝑧 ∈ ω ∧ (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ) ∈ V) → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ))
2621, 25mpan2 687 . . . . . . . . . 10 (𝑧 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ))
2726eleq1d 2816 . . . . . . . . 9 (𝑧 ∈ ω → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴))
2820, 27imbitrrid 245 . . . . . . . 8 (𝑧 ∈ ω → ((( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) ∧ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘suc 𝑧) ∈ 𝐴))
2928expd 414 . . . . . . 7 (𝑧 ∈ ω → (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘suc 𝑧) ∈ 𝐴)))
307, 9, 11, 15, 29finds2 7893 . . . . . 6 (𝑦 ∈ ω → (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) ∈ 𝐴))
3130com12 32 . . . . 5 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (𝑦 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) ∈ 𝐴))
3231ralrimiv 3143 . . . 4 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) ∈ 𝐴)
33 ffnfv 7119 . . . 4 ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω):ω⟶𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω) Fn ω ∧ ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω)‘𝑦) ∈ 𝐴))
345, 32, 33sylanbrc 581 . . 3 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω):ω⟶𝐴)
3534frnd 6724 . 2 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ran (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) ↾ ω) ⊆ 𝐴)
363, 35eqsstrid 4029 1 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wral 3059  Vcvv 3472  wss 3947  c0 4321  cmpt 5230  ran crn 5676  cres 5677  cima 5678  suc csuc 6365   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7411  ωcom 7857  reccrdg 8411   0s c0s 27560   1s c1s 27561   +s cadds 27681  0scnn0s 27929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-n0s 27931
This theorem is referenced by:  n0ssno  27936  dfn0s2  27941  n0sind  27942
  Copyright terms: Public domain W3C validator