MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5n0s Structured version   Visualization version   GIF version

Theorem peano5n0s 28249
Description: Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
peano5n0s (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5n0s
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-n0s 28245 . . 3 0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)
21a1i 11 . 2 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω))
3 0sno 27771 . . 3 0s No
43a1i 11 . 2 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → 0s No )
5 simpl 482 . 2 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → 0s𝐴)
6 oveq1 7353 . . . . 5 (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s ))
76eleq1d 2816 . . . 4 (𝑥 = 𝑦 → ((𝑥 +s 1s ) ∈ 𝐴 ↔ (𝑦 +s 1s ) ∈ 𝐴))
87rspccva 3576 . . 3 ((∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴𝑦𝐴) → (𝑦 +s 1s ) ∈ 𝐴)
98adantll 714 . 2 ((( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) ∧ 𝑦𝐴) → (𝑦 +s 1s ) ∈ 𝐴)
102, 4, 5, 9noseqind 28223 1 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3902  cmpt 5172  cima 5619  (class class class)co 7346  ωcom 7796  reccrdg 8328   No csur 27579   0s c0s 27767   1s c1s 27768   +s cadds 27903  0scnn0s 28243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-no 27582  df-slt 27583  df-bday 27584  df-sslt 27722  df-scut 27724  df-0s 27769  df-n0s 28245
This theorem is referenced by:  dfn0s2  28261
  Copyright terms: Public domain W3C validator