MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5n0s Structured version   Visualization version   GIF version

Theorem peano5n0s 28269
Description: Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.)
Assertion
Ref Expression
peano5n0s (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5n0s
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-n0s 28265 . . 3 0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)
21a1i 11 . 2 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω))
3 0sno 27795 . . 3 0s No
43a1i 11 . 2 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → 0s No )
5 simpl 482 . 2 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → 0s𝐴)
6 oveq1 7417 . . . . 5 (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s ))
76eleq1d 2820 . . . 4 (𝑥 = 𝑦 → ((𝑥 +s 1s ) ∈ 𝐴 ↔ (𝑦 +s 1s ) ∈ 𝐴))
87rspccva 3605 . . 3 ((∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴𝑦𝐴) → (𝑦 +s 1s ) ∈ 𝐴)
98adantll 714 . 2 ((( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) ∧ 𝑦𝐴) → (𝑦 +s 1s ) ∈ 𝐴)
102, 4, 5, 9noseqind 28243 1 (( 0s𝐴 ∧ ∀𝑥𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  cmpt 5206  cima 5662  (class class class)co 7410  ωcom 7866  reccrdg 8428   No csur 27608   0s c0s 27791   1s c1s 27792   +s cadds 27923  0scnn0s 28263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-0s 27793  df-n0s 28265
This theorem is referenced by:  dfn0s2  28281
  Copyright terms: Public domain W3C validator