![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano5n0s | Structured version Visualization version GIF version |
Description: Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
Ref | Expression |
---|---|
peano5n0s | ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0s 28237 | . . 3 ⊢ ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) | |
2 | 1 | a1i 11 | . 2 ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)) |
3 | 0sno 27805 | . . 3 ⊢ 0s ∈ No | |
4 | 3 | a1i 11 | . 2 ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → 0s ∈ No ) |
5 | simpl 481 | . 2 ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → 0s ∈ 𝐴) | |
6 | oveq1 7426 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s )) | |
7 | 6 | eleq1d 2810 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 +s 1s ) ∈ 𝐴 ↔ (𝑦 +s 1s ) ∈ 𝐴)) |
8 | 7 | rspccva 3605 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦 +s 1s ) ∈ 𝐴) |
9 | 8 | adantll 712 | . 2 ⊢ ((( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑦 +s 1s ) ∈ 𝐴) |
10 | 2, 4, 5, 9 | noseqind 28215 | 1 ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 Vcvv 3461 ⊆ wss 3944 ↦ cmpt 5232 “ cima 5681 (class class class)co 7419 ωcom 7871 reccrdg 8430 No csur 27618 0s c0s 27801 1s c1s 27802 +s cadds 27922 ℕ0scnn0s 28235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-no 27621 df-slt 27622 df-bday 27623 df-sslt 27760 df-scut 27762 df-0s 27803 df-n0s 28237 |
This theorem is referenced by: dfn0s2 28253 |
Copyright terms: Public domain | W3C validator |