Step | Hyp | Ref
| Expression |
1 | | df-n0s 27931 |
. . 3
⊢
ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) “ ω) |
2 | | df-ima 5688 |
. . 3
⊢
(rec((𝑛 ∈ V
↦ (𝑛 +s
1s )), 0s ) “ ω) = ran (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω) |
3 | 1, 2 | eqtri 2758 |
. 2
⊢
ℕ0s = ran (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω) |
4 | | frfnom 8437 |
. . . . 5
⊢
(rec((𝑛 ∈ V
↦ (𝑛 +s
1s )), 0s ) ↾ ω) Fn ω |
5 | 4 | a1i 11 |
. . . 4
⊢ ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω) Fn ω) |
6 | | fveq2 6890 |
. . . . . . . 8
⊢ (𝑦 = ∅ → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘∅)) |
7 | 6 | eleq1d 2816 |
. . . . . . 7
⊢ (𝑦 = ∅ → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘∅) ∈ 𝐴)) |
8 | | fveq2 6890 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧)) |
9 | 8 | eleq1d 2816 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) ∈ 𝐴)) |
10 | | fveq2 6890 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘suc 𝑧)) |
11 | 10 | eleq1d 2816 |
. . . . . . 7
⊢ (𝑦 = suc 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘suc 𝑧) ∈ 𝐴)) |
12 | | fr0g 8438 |
. . . . . . . . 9
⊢ (
0s ∈ 𝐴
→ ((rec((𝑛 ∈ V
↦ (𝑛 +s
1s )), 0s ) ↾ ω)‘∅) =
0s ) |
13 | | id 22 |
. . . . . . . . 9
⊢ (
0s ∈ 𝐴
→ 0s ∈ 𝐴) |
14 | 12, 13 | eqeltrd 2831 |
. . . . . . . 8
⊢ (
0s ∈ 𝐴
→ ((rec((𝑛 ∈ V
↦ (𝑛 +s
1s )), 0s ) ↾ ω)‘∅) ∈ 𝐴) |
15 | 14 | adantr 479 |
. . . . . . 7
⊢ ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘∅) ∈ 𝐴) |
16 | | oveq1 7418 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) → (𝑥 +s 1s ) =
(((rec((𝑛 ∈ V ↦
(𝑛 +s
1s )), 0s ) ↾ ω)‘𝑧) +s 1s
)) |
17 | 16 | eleq1d 2816 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) → ((𝑥 +s 1s ) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴)) |
18 | 17 | rspccv 3608 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴)) |
19 | 18 | adantl 480 |
. . . . . . . . . 10
⊢ ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴)) |
20 | 19 | imp 405 |
. . . . . . . . 9
⊢ (((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) ∧ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴) |
21 | | ovex 7444 |
. . . . . . . . . . 11
⊢
(((rec((𝑛 ∈ V
↦ (𝑛 +s
1s )), 0s ) ↾ ω)‘𝑧) +s 1s ) ∈
V |
22 | | eqid 2730 |
. . . . . . . . . . . 12
⊢
(rec((𝑛 ∈ V
↦ (𝑛 +s
1s )), 0s ) ↾ ω) = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω) |
23 | | oveq1 7418 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑛 → (𝑦 +s 1s ) = (𝑛 +s 1s
)) |
24 | | oveq1 7418 |
. . . . . . . . . . . 12
⊢ (𝑦 = ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) → (𝑦 +s 1s ) =
(((rec((𝑛 ∈ V ↦
(𝑛 +s
1s )), 0s ) ↾ ω)‘𝑧) +s 1s
)) |
25 | 22, 23, 24 | frsucmpt2 8442 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ω ∧
(((rec((𝑛 ∈ V ↦
(𝑛 +s
1s )), 0s ) ↾ ω)‘𝑧) +s 1s ) ∈ V)
→ ((rec((𝑛 ∈ V
↦ (𝑛 +s
1s )), 0s ) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) +s 1s
)) |
26 | 21, 25 | mpan2 687 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ω →
((rec((𝑛 ∈ V ↦
(𝑛 +s
1s )), 0s ) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) +s 1s
)) |
27 | 26 | eleq1d 2816 |
. . . . . . . . 9
⊢ (𝑧 ∈ ω →
(((rec((𝑛 ∈ V ↦
(𝑛 +s
1s )), 0s ) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) +s 1s ) ∈ 𝐴)) |
28 | 20, 27 | imbitrrid 245 |
. . . . . . . 8
⊢ (𝑧 ∈ ω → (((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) ∧ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘suc 𝑧) ∈ 𝐴)) |
29 | 28 | expd 414 |
. . . . . . 7
⊢ (𝑧 ∈ ω → ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘suc 𝑧) ∈ 𝐴))) |
30 | 7, 9, 11, 15, 29 | finds2 7893 |
. . . . . 6
⊢ (𝑦 ∈ ω → ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) ∈ 𝐴)) |
31 | 30 | com12 32 |
. . . . 5
⊢ ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (𝑦 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) ∈ 𝐴)) |
32 | 31 | ralrimiv 3143 |
. . . 4
⊢ ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) ∈ 𝐴) |
33 | | ffnfv 7119 |
. . . 4
⊢
((rec((𝑛 ∈ V
↦ (𝑛 +s
1s )), 0s ) ↾ ω):ω⟶𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω) Fn ω ∧ ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω)‘𝑦) ∈ 𝐴)) |
34 | 5, 32, 33 | sylanbrc 581 |
. . 3
⊢ ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω):ω⟶𝐴) |
35 | 34 | frnd 6724 |
. 2
⊢ ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ran (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )),
0s ) ↾ ω) ⊆ 𝐴) |
36 | 3, 35 | eqsstrid 4029 |
1
⊢ ((
0s ∈ 𝐴
∧ ∀𝑥 ∈
𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s
⊆ 𝐴) |