| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano5n0s | Structured version Visualization version GIF version | ||
| Description: Peano's inductive postulate for non-negative surreal integers. (Contributed by Scott Fenton, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| peano5n0s | ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0s 28245 | . . 3 ⊢ ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s = (rec((𝑛 ∈ V ↦ (𝑛 +s 1s )), 0s ) “ ω)) |
| 3 | 0sno 27771 | . . 3 ⊢ 0s ∈ No | |
| 4 | 3 | a1i 11 | . 2 ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → 0s ∈ No ) |
| 5 | simpl 482 | . 2 ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → 0s ∈ 𝐴) | |
| 6 | oveq1 7353 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 +s 1s ) = (𝑦 +s 1s )) | |
| 7 | 6 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 +s 1s ) ∈ 𝐴 ↔ (𝑦 +s 1s ) ∈ 𝐴)) |
| 8 | 7 | rspccva 3576 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦 +s 1s ) ∈ 𝐴) |
| 9 | 8 | adantll 714 | . 2 ⊢ ((( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑦 +s 1s ) ∈ 𝐴) |
| 10 | 2, 4, 5, 9 | noseqind 28223 | 1 ⊢ (( 0s ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 +s 1s ) ∈ 𝐴) → ℕ0s ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 ↦ cmpt 5172 “ cima 5619 (class class class)co 7346 ωcom 7796 reccrdg 8328 No csur 27579 0s c0s 27767 1s c1s 27768 +s cadds 27903 ℕ0scnn0s 28243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-no 27582 df-slt 27583 df-bday 27584 df-sslt 27722 df-scut 27724 df-0s 27769 df-n0s 28245 |
| This theorem is referenced by: dfn0s2 28261 |
| Copyright terms: Public domain | W3C validator |