![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ge0mulcl | Structured version Visualization version GIF version |
Description: The nonnegative reals are closed under multiplication. (Contributed by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
ge0mulcl | โข ((๐ด โ (0[,)+โ) โง ๐ต โ (0[,)+โ)) โ (๐ด ยท ๐ต) โ (0[,)+โ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrege0 13471 | . 2 โข (๐ด โ (0[,)+โ) โ (๐ด โ โ โง 0 โค ๐ด)) | |
2 | elrege0 13471 | . 2 โข (๐ต โ (0[,)+โ) โ (๐ต โ โ โง 0 โค ๐ต)) | |
3 | remulcl 11231 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) โ โ) | |
4 | 3 | ad2ant2r 745 | . . 3 โข (((๐ด โ โ โง 0 โค ๐ด) โง (๐ต โ โ โง 0 โค ๐ต)) โ (๐ด ยท ๐ต) โ โ) |
5 | mulge0 11770 | . . 3 โข (((๐ด โ โ โง 0 โค ๐ด) โง (๐ต โ โ โง 0 โค ๐ต)) โ 0 โค (๐ด ยท ๐ต)) | |
6 | elrege0 13471 | . . 3 โข ((๐ด ยท ๐ต) โ (0[,)+โ) โ ((๐ด ยท ๐ต) โ โ โง 0 โค (๐ด ยท ๐ต))) | |
7 | 4, 5, 6 | sylanbrc 581 | . 2 โข (((๐ด โ โ โง 0 โค ๐ด) โง (๐ต โ โ โง 0 โค ๐ต)) โ (๐ด ยท ๐ต) โ (0[,)+โ)) |
8 | 1, 2, 7 | syl2anb 596 | 1 โข ((๐ด โ (0[,)+โ) โง ๐ต โ (0[,)+โ)) โ (๐ด ยท ๐ต) โ (0[,)+โ)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 394 โ wcel 2098 class class class wbr 5152 (class class class)co 7426 โcr 11145 0cc0 11146 ยท cmul 11151 +โcpnf 11283 โค cle 11287 [,)cico 13366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-ico 13370 |
This theorem is referenced by: fprodge0 15977 rge0srg 21378 itg2mulclem 25696 itg2mulc 25697 |
Copyright terms: Public domain | W3C validator |