![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpsgnodpm | Structured version Visualization version GIF version |
Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgnevpm.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
zrhpsgnevpm.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
zrhpsgnevpm.o | ⊢ 1 = (1r‘𝑅) |
zrhpsgnodpm.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
zrhpsgnodpm.i | ⊢ 𝐼 = (invg‘𝑅) |
Ref | Expression |
---|---|
zrhpsgnodpm | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . 6 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | zrhpsgnevpm.s | . . . . . 6 ⊢ 𝑆 = (pmSgn‘𝑁) | |
3 | eqid 2736 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
4 | 1, 2, 3 | psgnghm2 20985 | . . . . 5 ⊢ (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
5 | zrhpsgnodpm.p | . . . . . 6 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
6 | eqid 2736 | . . . . . 6 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
7 | 5, 6 | ghmf 19012 | . . . . 5 ⊢ (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
9 | 8 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
10 | eldifi 4086 | . . . 4 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁)) → 𝐹 ∈ 𝑃) | |
11 | 10 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝐹 ∈ 𝑃) |
12 | fvco3 6940 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) | |
13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) |
14 | 1, 5, 2 | psgnodpm 20992 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
15 | 14 | 3adant1 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
16 | 15 | fveq2d 6846 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘(𝑆‘𝐹)) = (𝑌‘-1)) |
17 | zrhpsgnevpm.y | . . . . . . 7 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
18 | 17 | zrhrhm 20912 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring RingHom 𝑅)) |
19 | rhmghm 20157 | . . . . . 6 ⊢ (𝑌 ∈ (ℤring RingHom 𝑅) → 𝑌 ∈ (ℤring GrpHom 𝑅)) | |
20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring GrpHom 𝑅)) |
21 | 1z 12533 | . . . . . 6 ⊢ 1 ∈ ℤ | |
22 | 21 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 ∈ ℤ) |
23 | zringbas 20875 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
24 | eqid 2736 | . . . . . 6 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
25 | zrhpsgnodpm.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝑅) | |
26 | 23, 24, 25 | ghminv 19015 | . . . . 5 ⊢ ((𝑌 ∈ (ℤring GrpHom 𝑅) ∧ 1 ∈ ℤ) → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
27 | 20, 22, 26 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
28 | zringinvg 20886 | . . . . . . . 8 ⊢ (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1)) | |
29 | 21, 28 | ax-mp 5 | . . . . . . 7 ⊢ -1 = ((invg‘ℤring)‘1) |
30 | 29 | eqcomi 2745 | . . . . . 6 ⊢ ((invg‘ℤring)‘1) = -1 |
31 | 30 | fveq2i 6845 | . . . . 5 ⊢ (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1) |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1)) |
33 | zrhpsgnevpm.o | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
34 | 17, 33 | zrh1 20913 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑌‘1) = 1 ) |
35 | 34 | fveq2d 6846 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼‘(𝑌‘1)) = (𝐼‘ 1 )) |
36 | 27, 32, 35 | 3eqtr3d 2784 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) = (𝐼‘ 1 )) |
37 | 36 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘-1) = (𝐼‘ 1 )) |
38 | 13, 16, 37 | 3eqtrd 2780 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∖ cdif 3907 {cpr 4588 ∘ ccom 5637 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 Fincfn 8883 1c1 11052 -cneg 11386 ℤcz 12499 Basecbs 17083 ↾s cress 17112 invgcminusg 18749 GrpHom cghm 19005 SymGrpcsymg 19148 pmSgncpsgn 19271 pmEvencevpm 19272 mulGrpcmgp 19896 1rcur 19913 Ringcrg 19964 RingHom crh 20143 ℂfldccnfld 20796 ℤringczring 20869 ℤRHomczrh 20900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-xnn0 12486 df-z 12500 df-dec 12619 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-word 14403 df-lsw 14451 df-concat 14459 df-s1 14484 df-substr 14529 df-pfx 14559 df-splice 14638 df-reverse 14647 df-s2 14737 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-0g 17323 df-gsum 17324 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-efmnd 18679 df-grp 18751 df-minusg 18752 df-mulg 18873 df-subg 18925 df-ghm 19006 df-gim 19049 df-oppg 19124 df-symg 19149 df-pmtr 19224 df-psgn 19273 df-evpm 19274 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-rnghom 20146 df-drng 20187 df-subrg 20220 df-cnfld 20797 df-zring 20870 df-zrh 20904 |
This theorem is referenced by: mdetralt 21957 mdetunilem7 21967 |
Copyright terms: Public domain | W3C validator |