![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpsgnodpm | Structured version Visualization version GIF version |
Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgnevpm.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
zrhpsgnevpm.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
zrhpsgnevpm.o | ⊢ 1 = (1r‘𝑅) |
zrhpsgnodpm.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
zrhpsgnodpm.i | ⊢ 𝐼 = (invg‘𝑅) |
Ref | Expression |
---|---|
zrhpsgnodpm | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | zrhpsgnevpm.s | . . . . . 6 ⊢ 𝑆 = (pmSgn‘𝑁) | |
3 | eqid 2735 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
4 | 1, 2, 3 | psgnghm2 21617 | . . . . 5 ⊢ (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
5 | zrhpsgnodpm.p | . . . . . 6 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
6 | eqid 2735 | . . . . . 6 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
7 | 5, 6 | ghmf 19251 | . . . . 5 ⊢ (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
9 | 8 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
10 | eldifi 4141 | . . . 4 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁)) → 𝐹 ∈ 𝑃) | |
11 | 10 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝐹 ∈ 𝑃) |
12 | fvco3 7008 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) | |
13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) |
14 | 1, 5, 2 | psgnodpm 21624 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
15 | 14 | 3adant1 1129 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
16 | 15 | fveq2d 6911 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘(𝑆‘𝐹)) = (𝑌‘-1)) |
17 | zrhpsgnevpm.y | . . . . . . 7 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
18 | 17 | zrhrhm 21540 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring RingHom 𝑅)) |
19 | rhmghm 20501 | . . . . . 6 ⊢ (𝑌 ∈ (ℤring RingHom 𝑅) → 𝑌 ∈ (ℤring GrpHom 𝑅)) | |
20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring GrpHom 𝑅)) |
21 | 1z 12645 | . . . . . 6 ⊢ 1 ∈ ℤ | |
22 | 21 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 ∈ ℤ) |
23 | zringbas 21482 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
24 | eqid 2735 | . . . . . 6 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
25 | zrhpsgnodpm.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝑅) | |
26 | 23, 24, 25 | ghminv 19254 | . . . . 5 ⊢ ((𝑌 ∈ (ℤring GrpHom 𝑅) ∧ 1 ∈ ℤ) → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
27 | 20, 22, 26 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
28 | zringinvg 21494 | . . . . . . . 8 ⊢ (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1)) | |
29 | 21, 28 | ax-mp 5 | . . . . . . 7 ⊢ -1 = ((invg‘ℤring)‘1) |
30 | 29 | eqcomi 2744 | . . . . . 6 ⊢ ((invg‘ℤring)‘1) = -1 |
31 | 30 | fveq2i 6910 | . . . . 5 ⊢ (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1) |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1)) |
33 | zrhpsgnevpm.o | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
34 | 17, 33 | zrh1 21541 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑌‘1) = 1 ) |
35 | 34 | fveq2d 6911 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼‘(𝑌‘1)) = (𝐼‘ 1 )) |
36 | 27, 32, 35 | 3eqtr3d 2783 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) = (𝐼‘ 1 )) |
37 | 36 | 3ad2ant1 1132 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘-1) = (𝐼‘ 1 )) |
38 | 13, 16, 37 | 3eqtrd 2779 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 {cpr 4633 ∘ ccom 5693 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 1c1 11154 -cneg 11491 ℤcz 12611 Basecbs 17245 ↾s cress 17274 invgcminusg 18965 GrpHom cghm 19243 SymGrpcsymg 19401 pmSgncpsgn 19522 pmEvencevpm 19523 mulGrpcmgp 20152 1rcur 20199 Ringcrg 20251 RingHom crh 20486 ℂfldccnfld 21382 ℤringczring 21475 ℤRHomczrh 21528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-splice 14785 df-reverse 14794 df-s2 14884 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-gsum 17489 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-efmnd 18895 df-grp 18967 df-minusg 18968 df-mulg 19099 df-subg 19154 df-ghm 19244 df-gim 19290 df-oppg 19377 df-symg 19402 df-pmtr 19475 df-psgn 19524 df-evpm 19525 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-drng 20748 df-cnfld 21383 df-zring 21476 df-zrh 21532 |
This theorem is referenced by: mdetralt 22630 mdetunilem7 22640 |
Copyright terms: Public domain | W3C validator |