| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrhpsgnodpm | Structured version Visualization version GIF version | ||
| Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| zrhpsgnevpm.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| zrhpsgnevpm.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| zrhpsgnevpm.o | ⊢ 1 = (1r‘𝑅) |
| zrhpsgnodpm.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| zrhpsgnodpm.i | ⊢ 𝐼 = (invg‘𝑅) |
| Ref | Expression |
|---|---|
| zrhpsgnodpm | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . 6 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 2 | zrhpsgnevpm.s | . . . . . 6 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 4 | 1, 2, 3 | psgnghm2 21519 | . . . . 5 ⊢ (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 5 | zrhpsgnodpm.p | . . . . . 6 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 7 | 5, 6 | ghmf 19133 | . . . . 5 ⊢ (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 9 | 8 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 10 | eldifi 4081 | . . . 4 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁)) → 𝐹 ∈ 𝑃) | |
| 11 | 10 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝐹 ∈ 𝑃) |
| 12 | fvco3 6921 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) | |
| 13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) |
| 14 | 1, 5, 2 | psgnodpm 21526 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
| 15 | 14 | 3adant1 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
| 16 | 15 | fveq2d 6826 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘(𝑆‘𝐹)) = (𝑌‘-1)) |
| 17 | zrhpsgnevpm.y | . . . . . . 7 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 18 | 17 | zrhrhm 21449 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring RingHom 𝑅)) |
| 19 | rhmghm 20402 | . . . . . 6 ⊢ (𝑌 ∈ (ℤring RingHom 𝑅) → 𝑌 ∈ (ℤring GrpHom 𝑅)) | |
| 20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring GrpHom 𝑅)) |
| 21 | 1z 12502 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 ∈ ℤ) |
| 23 | zringbas 21391 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
| 24 | eqid 2731 | . . . . . 6 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 25 | zrhpsgnodpm.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝑅) | |
| 26 | 23, 24, 25 | ghminv 19136 | . . . . 5 ⊢ ((𝑌 ∈ (ℤring GrpHom 𝑅) ∧ 1 ∈ ℤ) → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
| 27 | 20, 22, 26 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
| 28 | zringinvg 21403 | . . . . . . . 8 ⊢ (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1)) | |
| 29 | 21, 28 | ax-mp 5 | . . . . . . 7 ⊢ -1 = ((invg‘ℤring)‘1) |
| 30 | 29 | eqcomi 2740 | . . . . . 6 ⊢ ((invg‘ℤring)‘1) = -1 |
| 31 | 30 | fveq2i 6825 | . . . . 5 ⊢ (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1) |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1)) |
| 33 | zrhpsgnevpm.o | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 34 | 17, 33 | zrh1 21450 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑌‘1) = 1 ) |
| 35 | 34 | fveq2d 6826 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼‘(𝑌‘1)) = (𝐼‘ 1 )) |
| 36 | 27, 32, 35 | 3eqtr3d 2774 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) = (𝐼‘ 1 )) |
| 37 | 36 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘-1) = (𝐼‘ 1 )) |
| 38 | 13, 16, 37 | 3eqtrd 2770 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 {cpr 4578 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 1c1 11007 -cneg 11345 ℤcz 12468 Basecbs 17120 ↾s cress 17141 invgcminusg 18847 GrpHom cghm 19125 SymGrpcsymg 19282 pmSgncpsgn 19402 pmEvencevpm 19403 mulGrpcmgp 20059 1rcur 20100 Ringcrg 20152 RingHom crh 20388 ℂfldccnfld 21292 ℤringczring 21384 ℤRHomczrh 21437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-mulg 18981 df-subg 19036 df-ghm 19126 df-gim 19172 df-oppg 19259 df-symg 19283 df-pmtr 19355 df-psgn 19404 df-evpm 19405 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-cring 20155 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-dvr 20320 df-rhm 20391 df-subrng 20462 df-subrg 20486 df-drng 20647 df-cnfld 21293 df-zring 21385 df-zrh 21441 |
| This theorem is referenced by: mdetralt 22524 mdetunilem7 22534 |
| Copyright terms: Public domain | W3C validator |