![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpsgnodpm | Structured version Visualization version GIF version |
Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgnevpm.y | β’ π = (β€RHomβπ ) |
zrhpsgnevpm.s | β’ π = (pmSgnβπ) |
zrhpsgnevpm.o | β’ 1 = (1rβπ ) |
zrhpsgnodpm.p | β’ π = (Baseβ(SymGrpβπ)) |
zrhpsgnodpm.i | β’ πΌ = (invgβπ ) |
Ref | Expression |
---|---|
zrhpsgnodpm | β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β ((π β π)βπΉ) = (πΌβ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . . 6 β’ (SymGrpβπ) = (SymGrpβπ) | |
2 | zrhpsgnevpm.s | . . . . . 6 β’ π = (pmSgnβπ) | |
3 | eqid 2732 | . . . . . 6 β’ ((mulGrpββfld) βΎs {1, -1}) = ((mulGrpββfld) βΎs {1, -1}) | |
4 | 1, 2, 3 | psgnghm2 21133 | . . . . 5 β’ (π β Fin β π β ((SymGrpβπ) GrpHom ((mulGrpββfld) βΎs {1, -1}))) |
5 | zrhpsgnodpm.p | . . . . . 6 β’ π = (Baseβ(SymGrpβπ)) | |
6 | eqid 2732 | . . . . . 6 β’ (Baseβ((mulGrpββfld) βΎs {1, -1})) = (Baseβ((mulGrpββfld) βΎs {1, -1})) | |
7 | 5, 6 | ghmf 19095 | . . . . 5 β’ (π β ((SymGrpβπ) GrpHom ((mulGrpββfld) βΎs {1, -1})) β π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1}))) |
8 | 4, 7 | syl 17 | . . . 4 β’ (π β Fin β π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1}))) |
9 | 8 | 3ad2ant2 1134 | . . 3 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1}))) |
10 | eldifi 4126 | . . . 4 β’ (πΉ β (π β (pmEvenβπ)) β πΉ β π) | |
11 | 10 | 3ad2ant3 1135 | . . 3 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β πΉ β π) |
12 | fvco3 6990 | . . 3 β’ ((π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1})) β§ πΉ β π) β ((π β π)βπΉ) = (πβ(πβπΉ))) | |
13 | 9, 11, 12 | syl2anc 584 | . 2 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β ((π β π)βπΉ) = (πβ(πβπΉ))) |
14 | 1, 5, 2 | psgnodpm 21140 | . . . 4 β’ ((π β Fin β§ πΉ β (π β (pmEvenβπ))) β (πβπΉ) = -1) |
15 | 14 | 3adant1 1130 | . . 3 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β (πβπΉ) = -1) |
16 | 15 | fveq2d 6895 | . 2 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β (πβ(πβπΉ)) = (πβ-1)) |
17 | zrhpsgnevpm.y | . . . . . . 7 β’ π = (β€RHomβπ ) | |
18 | 17 | zrhrhm 21060 | . . . . . 6 β’ (π β Ring β π β (β€ring RingHom π )) |
19 | rhmghm 20261 | . . . . . 6 β’ (π β (β€ring RingHom π ) β π β (β€ring GrpHom π )) | |
20 | 18, 19 | syl 17 | . . . . 5 β’ (π β Ring β π β (β€ring GrpHom π )) |
21 | 1z 12591 | . . . . . 6 β’ 1 β β€ | |
22 | 21 | a1i 11 | . . . . 5 β’ (π β Ring β 1 β β€) |
23 | zringbas 21022 | . . . . . 6 β’ β€ = (Baseββ€ring) | |
24 | eqid 2732 | . . . . . 6 β’ (invgββ€ring) = (invgββ€ring) | |
25 | zrhpsgnodpm.i | . . . . . 6 β’ πΌ = (invgβπ ) | |
26 | 23, 24, 25 | ghminv 19098 | . . . . 5 β’ ((π β (β€ring GrpHom π ) β§ 1 β β€) β (πβ((invgββ€ring)β1)) = (πΌβ(πβ1))) |
27 | 20, 22, 26 | syl2anc 584 | . . . 4 β’ (π β Ring β (πβ((invgββ€ring)β1)) = (πΌβ(πβ1))) |
28 | zringinvg 21034 | . . . . . . . 8 β’ (1 β β€ β -1 = ((invgββ€ring)β1)) | |
29 | 21, 28 | ax-mp 5 | . . . . . . 7 β’ -1 = ((invgββ€ring)β1) |
30 | 29 | eqcomi 2741 | . . . . . 6 β’ ((invgββ€ring)β1) = -1 |
31 | 30 | fveq2i 6894 | . . . . 5 β’ (πβ((invgββ€ring)β1)) = (πβ-1) |
32 | 31 | a1i 11 | . . . 4 β’ (π β Ring β (πβ((invgββ€ring)β1)) = (πβ-1)) |
33 | zrhpsgnevpm.o | . . . . . 6 β’ 1 = (1rβπ ) | |
34 | 17, 33 | zrh1 21061 | . . . . 5 β’ (π β Ring β (πβ1) = 1 ) |
35 | 34 | fveq2d 6895 | . . . 4 β’ (π β Ring β (πΌβ(πβ1)) = (πΌβ 1 )) |
36 | 27, 32, 35 | 3eqtr3d 2780 | . . 3 β’ (π β Ring β (πβ-1) = (πΌβ 1 )) |
37 | 36 | 3ad2ant1 1133 | . 2 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β (πβ-1) = (πΌβ 1 )) |
38 | 13, 16, 37 | 3eqtrd 2776 | 1 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β ((π β π)βπΉ) = (πΌβ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β cdif 3945 {cpr 4630 β ccom 5680 βΆwf 6539 βcfv 6543 (class class class)co 7408 Fincfn 8938 1c1 11110 -cneg 11444 β€cz 12557 Basecbs 17143 βΎs cress 17172 invgcminusg 18819 GrpHom cghm 19088 SymGrpcsymg 19233 pmSgncpsgn 19356 pmEvencevpm 19357 mulGrpcmgp 19986 1rcur 20003 Ringcrg 20055 RingHom crh 20247 βfldccnfld 20943 β€ringczring 21016 β€RHomczrh 21048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-word 14464 df-lsw 14512 df-concat 14520 df-s1 14545 df-substr 14590 df-pfx 14620 df-splice 14699 df-reverse 14708 df-s2 14798 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-gsum 17387 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-efmnd 18749 df-grp 18821 df-minusg 18822 df-mulg 18950 df-subg 19002 df-ghm 19089 df-gim 19132 df-oppg 19209 df-symg 19234 df-pmtr 19309 df-psgn 19358 df-evpm 19359 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-rnghom 20250 df-subrg 20316 df-drng 20358 df-cnfld 20944 df-zring 21017 df-zrh 21052 |
This theorem is referenced by: mdetralt 22109 mdetunilem7 22119 |
Copyright terms: Public domain | W3C validator |