MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgnodpm Structured version   Visualization version   GIF version

Theorem zrhpsgnodpm 21531
Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
zrhpsgnevpm.y 𝑌 = (ℤRHom‘𝑅)
zrhpsgnevpm.s 𝑆 = (pmSgn‘𝑁)
zrhpsgnevpm.o 1 = (1r𝑅)
zrhpsgnodpm.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgnodpm.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
zrhpsgnodpm ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌𝑆)‘𝐹) = (𝐼1 ))

Proof of Theorem zrhpsgnodpm
StepHypRef Expression
1 eqid 2733 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 zrhpsgnevpm.s . . . . . 6 𝑆 = (pmSgn‘𝑁)
3 eqid 2733 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
41, 2, 3psgnghm2 21520 . . . . 5 (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
5 zrhpsgnodpm.p . . . . . 6 𝑃 = (Base‘(SymGrp‘𝑁))
6 eqid 2733 . . . . . 6 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
75, 6ghmf 19134 . . . . 5 (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
84, 7syl 17 . . . 4 (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
983ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
10 eldifi 4080 . . . 4 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁)) → 𝐹𝑃)
11103ad2ant3 1135 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝐹𝑃)
12 fvco3 6927 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
139, 11, 12syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
141, 5, 2psgnodpm 21527 . . . 4 ((𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆𝐹) = -1)
15143adant1 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆𝐹) = -1)
1615fveq2d 6832 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘(𝑆𝐹)) = (𝑌‘-1))
17 zrhpsgnevpm.y . . . . . . 7 𝑌 = (ℤRHom‘𝑅)
1817zrhrhm 21450 . . . . . 6 (𝑅 ∈ Ring → 𝑌 ∈ (ℤring RingHom 𝑅))
19 rhmghm 20403 . . . . . 6 (𝑌 ∈ (ℤring RingHom 𝑅) → 𝑌 ∈ (ℤring GrpHom 𝑅))
2018, 19syl 17 . . . . 5 (𝑅 ∈ Ring → 𝑌 ∈ (ℤring GrpHom 𝑅))
21 1z 12508 . . . . . 6 1 ∈ ℤ
2221a1i 11 . . . . 5 (𝑅 ∈ Ring → 1 ∈ ℤ)
23 zringbas 21392 . . . . . 6 ℤ = (Base‘ℤring)
24 eqid 2733 . . . . . 6 (invg‘ℤring) = (invg‘ℤring)
25 zrhpsgnodpm.i . . . . . 6 𝐼 = (invg𝑅)
2623, 24, 25ghminv 19137 . . . . 5 ((𝑌 ∈ (ℤring GrpHom 𝑅) ∧ 1 ∈ ℤ) → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1)))
2720, 22, 26syl2anc 584 . . . 4 (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1)))
28 zringinvg 21404 . . . . . . . 8 (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1))
2921, 28ax-mp 5 . . . . . . 7 -1 = ((invg‘ℤring)‘1)
3029eqcomi 2742 . . . . . 6 ((invg‘ℤring)‘1) = -1
3130fveq2i 6831 . . . . 5 (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1)
3231a1i 11 . . . 4 (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1))
33 zrhpsgnevpm.o . . . . . 6 1 = (1r𝑅)
3417, 33zrh1 21451 . . . . 5 (𝑅 ∈ Ring → (𝑌‘1) = 1 )
3534fveq2d 6832 . . . 4 (𝑅 ∈ Ring → (𝐼‘(𝑌‘1)) = (𝐼1 ))
3627, 32, 353eqtr3d 2776 . . 3 (𝑅 ∈ Ring → (𝑌‘-1) = (𝐼1 ))
37363ad2ant1 1133 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘-1) = (𝐼1 ))
3813, 16, 373eqtrd 2772 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌𝑆)‘𝐹) = (𝐼1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cdif 3895  {cpr 4577  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  Fincfn 8875  1c1 11014  -cneg 11352  cz 12475  Basecbs 17122  s cress 17143  invgcminusg 18849   GrpHom cghm 19126  SymGrpcsymg 19283  pmSgncpsgn 19403  pmEvencevpm 19404  mulGrpcmgp 20060  1rcur 20101  Ringcrg 20153   RingHom crh 20389  fldccnfld 21293  ringczring 21385  ℤRHomczrh 21438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-word 14423  df-lsw 14472  df-concat 14480  df-s1 14506  df-substr 14551  df-pfx 14581  df-splice 14659  df-reverse 14668  df-s2 14757  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-0g 17347  df-gsum 17348  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-efmnd 18779  df-grp 18851  df-minusg 18852  df-mulg 18983  df-subg 19038  df-ghm 19127  df-gim 19173  df-oppg 19260  df-symg 19284  df-pmtr 19356  df-psgn 19405  df-evpm 19406  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-drng 20648  df-cnfld 21294  df-zring 21386  df-zrh 21442
This theorem is referenced by:  mdetralt  22524  mdetunilem7  22534
  Copyright terms: Public domain W3C validator