![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpsgnodpm | Structured version Visualization version GIF version |
Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
zrhpsgnevpm.y | β’ π = (β€RHomβπ ) |
zrhpsgnevpm.s | β’ π = (pmSgnβπ) |
zrhpsgnevpm.o | β’ 1 = (1rβπ ) |
zrhpsgnodpm.p | β’ π = (Baseβ(SymGrpβπ)) |
zrhpsgnodpm.i | β’ πΌ = (invgβπ ) |
Ref | Expression |
---|---|
zrhpsgnodpm | β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β ((π β π)βπΉ) = (πΌβ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . . 6 β’ (SymGrpβπ) = (SymGrpβπ) | |
2 | zrhpsgnevpm.s | . . . . . 6 β’ π = (pmSgnβπ) | |
3 | eqid 2726 | . . . . . 6 β’ ((mulGrpββfld) βΎs {1, -1}) = ((mulGrpββfld) βΎs {1, -1}) | |
4 | 1, 2, 3 | psgnghm2 21474 | . . . . 5 β’ (π β Fin β π β ((SymGrpβπ) GrpHom ((mulGrpββfld) βΎs {1, -1}))) |
5 | zrhpsgnodpm.p | . . . . . 6 β’ π = (Baseβ(SymGrpβπ)) | |
6 | eqid 2726 | . . . . . 6 β’ (Baseβ((mulGrpββfld) βΎs {1, -1})) = (Baseβ((mulGrpββfld) βΎs {1, -1})) | |
7 | 5, 6 | ghmf 19145 | . . . . 5 β’ (π β ((SymGrpβπ) GrpHom ((mulGrpββfld) βΎs {1, -1})) β π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1}))) |
8 | 4, 7 | syl 17 | . . . 4 β’ (π β Fin β π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1}))) |
9 | 8 | 3ad2ant2 1131 | . . 3 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1}))) |
10 | eldifi 4121 | . . . 4 β’ (πΉ β (π β (pmEvenβπ)) β πΉ β π) | |
11 | 10 | 3ad2ant3 1132 | . . 3 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β πΉ β π) |
12 | fvco3 6984 | . . 3 β’ ((π:πβΆ(Baseβ((mulGrpββfld) βΎs {1, -1})) β§ πΉ β π) β ((π β π)βπΉ) = (πβ(πβπΉ))) | |
13 | 9, 11, 12 | syl2anc 583 | . 2 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β ((π β π)βπΉ) = (πβ(πβπΉ))) |
14 | 1, 5, 2 | psgnodpm 21481 | . . . 4 β’ ((π β Fin β§ πΉ β (π β (pmEvenβπ))) β (πβπΉ) = -1) |
15 | 14 | 3adant1 1127 | . . 3 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β (πβπΉ) = -1) |
16 | 15 | fveq2d 6889 | . 2 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β (πβ(πβπΉ)) = (πβ-1)) |
17 | zrhpsgnevpm.y | . . . . . . 7 β’ π = (β€RHomβπ ) | |
18 | 17 | zrhrhm 21398 | . . . . . 6 β’ (π β Ring β π β (β€ring RingHom π )) |
19 | rhmghm 20386 | . . . . . 6 β’ (π β (β€ring RingHom π ) β π β (β€ring GrpHom π )) | |
20 | 18, 19 | syl 17 | . . . . 5 β’ (π β Ring β π β (β€ring GrpHom π )) |
21 | 1z 12596 | . . . . . 6 β’ 1 β β€ | |
22 | 21 | a1i 11 | . . . . 5 β’ (π β Ring β 1 β β€) |
23 | zringbas 21340 | . . . . . 6 β’ β€ = (Baseββ€ring) | |
24 | eqid 2726 | . . . . . 6 β’ (invgββ€ring) = (invgββ€ring) | |
25 | zrhpsgnodpm.i | . . . . . 6 β’ πΌ = (invgβπ ) | |
26 | 23, 24, 25 | ghminv 19148 | . . . . 5 β’ ((π β (β€ring GrpHom π ) β§ 1 β β€) β (πβ((invgββ€ring)β1)) = (πΌβ(πβ1))) |
27 | 20, 22, 26 | syl2anc 583 | . . . 4 β’ (π β Ring β (πβ((invgββ€ring)β1)) = (πΌβ(πβ1))) |
28 | zringinvg 21352 | . . . . . . . 8 β’ (1 β β€ β -1 = ((invgββ€ring)β1)) | |
29 | 21, 28 | ax-mp 5 | . . . . . . 7 β’ -1 = ((invgββ€ring)β1) |
30 | 29 | eqcomi 2735 | . . . . . 6 β’ ((invgββ€ring)β1) = -1 |
31 | 30 | fveq2i 6888 | . . . . 5 β’ (πβ((invgββ€ring)β1)) = (πβ-1) |
32 | 31 | a1i 11 | . . . 4 β’ (π β Ring β (πβ((invgββ€ring)β1)) = (πβ-1)) |
33 | zrhpsgnevpm.o | . . . . . 6 β’ 1 = (1rβπ ) | |
34 | 17, 33 | zrh1 21399 | . . . . 5 β’ (π β Ring β (πβ1) = 1 ) |
35 | 34 | fveq2d 6889 | . . . 4 β’ (π β Ring β (πΌβ(πβ1)) = (πΌβ 1 )) |
36 | 27, 32, 35 | 3eqtr3d 2774 | . . 3 β’ (π β Ring β (πβ-1) = (πΌβ 1 )) |
37 | 36 | 3ad2ant1 1130 | . 2 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β (πβ-1) = (πΌβ 1 )) |
38 | 13, 16, 37 | 3eqtrd 2770 | 1 β’ ((π β Ring β§ π β Fin β§ πΉ β (π β (pmEvenβπ))) β ((π β π)βπΉ) = (πΌβ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 β cdif 3940 {cpr 4625 β ccom 5673 βΆwf 6533 βcfv 6537 (class class class)co 7405 Fincfn 8941 1c1 11113 -cneg 11449 β€cz 12562 Basecbs 17153 βΎs cress 17182 invgcminusg 18864 GrpHom cghm 19138 SymGrpcsymg 19286 pmSgncpsgn 19409 pmEvencevpm 19410 mulGrpcmgp 20039 1rcur 20086 Ringcrg 20138 RingHom crh 20371 βfldccnfld 21240 β€ringczring 21333 β€RHomczrh 21386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-xnn0 12549 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14033 df-hash 14296 df-word 14471 df-lsw 14519 df-concat 14527 df-s1 14552 df-substr 14597 df-pfx 14627 df-splice 14706 df-reverse 14715 df-s2 14805 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-0g 17396 df-gsum 17397 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-submnd 18714 df-efmnd 18794 df-grp 18866 df-minusg 18867 df-mulg 18996 df-subg 19050 df-ghm 19139 df-gim 19184 df-oppg 19262 df-symg 19287 df-pmtr 19362 df-psgn 19411 df-evpm 19412 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-cring 20141 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-dvr 20303 df-rhm 20374 df-subrng 20446 df-subrg 20471 df-drng 20589 df-cnfld 21241 df-zring 21334 df-zrh 21390 |
This theorem is referenced by: mdetralt 22465 mdetunilem7 22475 |
Copyright terms: Public domain | W3C validator |