| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrhpsgnodpm | Structured version Visualization version GIF version | ||
| Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| zrhpsgnevpm.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| zrhpsgnevpm.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| zrhpsgnevpm.o | ⊢ 1 = (1r‘𝑅) |
| zrhpsgnodpm.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| zrhpsgnodpm.i | ⊢ 𝐼 = (invg‘𝑅) |
| Ref | Expression |
|---|---|
| zrhpsgnodpm | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . . 6 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 2 | zrhpsgnevpm.s | . . . . . 6 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 3 | eqid 2736 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 4 | 1, 2, 3 | psgnghm2 21546 | . . . . 5 ⊢ (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 5 | zrhpsgnodpm.p | . . . . . 6 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 6 | eqid 2736 | . . . . . 6 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 7 | 5, 6 | ghmf 19208 | . . . . 5 ⊢ (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 9 | 8 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 10 | eldifi 4111 | . . . 4 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁)) → 𝐹 ∈ 𝑃) | |
| 11 | 10 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝐹 ∈ 𝑃) |
| 12 | fvco3 6983 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) | |
| 13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) |
| 14 | 1, 5, 2 | psgnodpm 21553 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
| 15 | 14 | 3adant1 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
| 16 | 15 | fveq2d 6885 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘(𝑆‘𝐹)) = (𝑌‘-1)) |
| 17 | zrhpsgnevpm.y | . . . . . . 7 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 18 | 17 | zrhrhm 21477 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring RingHom 𝑅)) |
| 19 | rhmghm 20449 | . . . . . 6 ⊢ (𝑌 ∈ (ℤring RingHom 𝑅) → 𝑌 ∈ (ℤring GrpHom 𝑅)) | |
| 20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring GrpHom 𝑅)) |
| 21 | 1z 12627 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 ∈ ℤ) |
| 23 | zringbas 21419 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
| 24 | eqid 2736 | . . . . . 6 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 25 | zrhpsgnodpm.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝑅) | |
| 26 | 23, 24, 25 | ghminv 19211 | . . . . 5 ⊢ ((𝑌 ∈ (ℤring GrpHom 𝑅) ∧ 1 ∈ ℤ) → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
| 27 | 20, 22, 26 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
| 28 | zringinvg 21431 | . . . . . . . 8 ⊢ (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1)) | |
| 29 | 21, 28 | ax-mp 5 | . . . . . . 7 ⊢ -1 = ((invg‘ℤring)‘1) |
| 30 | 29 | eqcomi 2745 | . . . . . 6 ⊢ ((invg‘ℤring)‘1) = -1 |
| 31 | 30 | fveq2i 6884 | . . . . 5 ⊢ (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1) |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1)) |
| 33 | zrhpsgnevpm.o | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 34 | 17, 33 | zrh1 21478 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑌‘1) = 1 ) |
| 35 | 34 | fveq2d 6885 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼‘(𝑌‘1)) = (𝐼‘ 1 )) |
| 36 | 27, 32, 35 | 3eqtr3d 2779 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) = (𝐼‘ 1 )) |
| 37 | 36 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘-1) = (𝐼‘ 1 )) |
| 38 | 13, 16, 37 | 3eqtrd 2775 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 {cpr 4608 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 1c1 11135 -cneg 11472 ℤcz 12593 Basecbs 17233 ↾s cress 17256 invgcminusg 18922 GrpHom cghm 19200 SymGrpcsymg 19355 pmSgncpsgn 19475 pmEvencevpm 19476 mulGrpcmgp 20105 1rcur 20146 Ringcrg 20198 RingHom crh 20434 ℂfldccnfld 21320 ℤringczring 21412 ℤRHomczrh 21465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-word 14537 df-lsw 14586 df-concat 14594 df-s1 14619 df-substr 14664 df-pfx 14694 df-splice 14773 df-reverse 14782 df-s2 14872 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-0g 17460 df-gsum 17461 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-efmnd 18852 df-grp 18924 df-minusg 18925 df-mulg 19056 df-subg 19111 df-ghm 19201 df-gim 19247 df-oppg 19334 df-symg 19356 df-pmtr 19428 df-psgn 19477 df-evpm 19478 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-drng 20696 df-cnfld 21321 df-zring 21413 df-zrh 21469 |
| This theorem is referenced by: mdetralt 22551 mdetunilem7 22561 |
| Copyright terms: Public domain | W3C validator |