| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrhpsgnodpm | Structured version Visualization version GIF version | ||
| Description: The sign of an odd permutation embedded into a ring is the additive inverse of the unity element of the ring. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| zrhpsgnevpm.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| zrhpsgnevpm.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| zrhpsgnevpm.o | ⊢ 1 = (1r‘𝑅) |
| zrhpsgnodpm.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| zrhpsgnodpm.i | ⊢ 𝐼 = (invg‘𝑅) |
| Ref | Expression |
|---|---|
| zrhpsgnodpm | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 2 | zrhpsgnevpm.s | . . . . . 6 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 4 | 1, 2, 3 | psgnghm2 21506 | . . . . 5 ⊢ (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 5 | zrhpsgnodpm.p | . . . . . 6 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 7 | 5, 6 | ghmf 19117 | . . . . 5 ⊢ (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 9 | 8 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 10 | eldifi 4084 | . . . 4 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁)) → 𝐹 ∈ 𝑃) | |
| 11 | 10 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝐹 ∈ 𝑃) |
| 12 | fvco3 6926 | . . 3 ⊢ ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) | |
| 13 | 9, 11, 12 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝑌‘(𝑆‘𝐹))) |
| 14 | 1, 5, 2 | psgnodpm 21513 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
| 15 | 14 | 3adant1 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆‘𝐹) = -1) |
| 16 | 15 | fveq2d 6830 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘(𝑆‘𝐹)) = (𝑌‘-1)) |
| 17 | zrhpsgnevpm.y | . . . . . . 7 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 18 | 17 | zrhrhm 21436 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring RingHom 𝑅)) |
| 19 | rhmghm 20387 | . . . . . 6 ⊢ (𝑌 ∈ (ℤring RingHom 𝑅) → 𝑌 ∈ (ℤring GrpHom 𝑅)) | |
| 20 | 18, 19 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑌 ∈ (ℤring GrpHom 𝑅)) |
| 21 | 1z 12523 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → 1 ∈ ℤ) |
| 23 | zringbas 21378 | . . . . . 6 ⊢ ℤ = (Base‘ℤring) | |
| 24 | eqid 2729 | . . . . . 6 ⊢ (invg‘ℤring) = (invg‘ℤring) | |
| 25 | zrhpsgnodpm.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝑅) | |
| 26 | 23, 24, 25 | ghminv 19120 | . . . . 5 ⊢ ((𝑌 ∈ (ℤring GrpHom 𝑅) ∧ 1 ∈ ℤ) → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
| 27 | 20, 22, 26 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1))) |
| 28 | zringinvg 21390 | . . . . . . . 8 ⊢ (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1)) | |
| 29 | 21, 28 | ax-mp 5 | . . . . . . 7 ⊢ -1 = ((invg‘ℤring)‘1) |
| 30 | 29 | eqcomi 2738 | . . . . . 6 ⊢ ((invg‘ℤring)‘1) = -1 |
| 31 | 30 | fveq2i 6829 | . . . . 5 ⊢ (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1) |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1)) |
| 33 | zrhpsgnevpm.o | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 34 | 17, 33 | zrh1 21437 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑌‘1) = 1 ) |
| 35 | 34 | fveq2d 6830 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼‘(𝑌‘1)) = (𝐼‘ 1 )) |
| 36 | 27, 32, 35 | 3eqtr3d 2772 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) = (𝐼‘ 1 )) |
| 37 | 36 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘-1) = (𝐼‘ 1 )) |
| 38 | 13, 16, 37 | 3eqtrd 2768 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌 ∘ 𝑆)‘𝐹) = (𝐼‘ 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 {cpr 4581 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 1c1 11029 -cneg 11366 ℤcz 12489 Basecbs 17138 ↾s cress 17159 invgcminusg 18831 GrpHom cghm 19109 SymGrpcsymg 19266 pmSgncpsgn 19386 pmEvencevpm 19387 mulGrpcmgp 20043 1rcur 20084 Ringcrg 20136 RingHom crh 20372 ℂfldccnfld 21279 ℤringczring 21371 ℤRHomczrh 21424 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-splice 14674 df-reverse 14683 df-s2 14773 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-gsum 17364 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-efmnd 18761 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-ghm 19110 df-gim 19156 df-oppg 19243 df-symg 19267 df-pmtr 19339 df-psgn 19388 df-evpm 19389 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-cnfld 21280 df-zring 21372 df-zrh 21428 |
| This theorem is referenced by: mdetralt 22511 mdetunilem7 22521 |
| Copyright terms: Public domain | W3C validator |