Step | Hyp | Ref
| Expression |
1 | | cnvimass 5989 |
. . 3
⊢ (◡𝐹 “ 𝑉) ⊆ dom 𝐹 |
2 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
3 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑇) =
(Base‘𝑇) |
4 | 2, 3 | ghmf 18838 |
. . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
5 | 4 | adantr 481 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
6 | 1, 5 | fssdm 6620 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ⊆ (Base‘𝑆)) |
7 | | ghmgrp1 18836 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
8 | 7 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝑆 ∈ Grp) |
9 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑆) = (0g‘𝑆) |
10 | 2, 9 | grpidcl 18607 |
. . . . 5
⊢ (𝑆 ∈ Grp →
(0g‘𝑆)
∈ (Base‘𝑆)) |
11 | 8, 10 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g‘𝑆) ∈ (Base‘𝑆)) |
12 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑇) = (0g‘𝑇) |
13 | 9, 12 | ghmid 18840 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
14 | 13 | adantr 481 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
15 | 12 | subg0cl 18763 |
. . . . . 6
⊢ (𝑉 ∈ (SubGrp‘𝑇) →
(0g‘𝑇)
∈ 𝑉) |
16 | 15 | adantl 482 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g‘𝑇) ∈ 𝑉) |
17 | 14, 16 | eqeltrd 2839 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹‘(0g‘𝑆)) ∈ 𝑉) |
18 | 5 | ffnd 6601 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝐹 Fn (Base‘𝑆)) |
19 | | elpreima 6935 |
. . . . 5
⊢ (𝐹 Fn (Base‘𝑆) →
((0g‘𝑆)
∈ (◡𝐹 “ 𝑉) ↔ ((0g‘𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g‘𝑆)) ∈ 𝑉))) |
20 | 18, 19 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((0g‘𝑆) ∈ (◡𝐹 “ 𝑉) ↔ ((0g‘𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g‘𝑆)) ∈ 𝑉))) |
21 | 11, 17, 20 | mpbir2and 710 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g‘𝑆) ∈ (◡𝐹 “ 𝑉)) |
22 | 21 | ne0d 4269 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ≠ ∅) |
23 | | elpreima 6935 |
. . . . 5
⊢ (𝐹 Fn (Base‘𝑆) → (𝑎 ∈ (◡𝐹 “ 𝑉) ↔ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉))) |
24 | 18, 23 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑎 ∈ (◡𝐹 “ 𝑉) ↔ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉))) |
25 | | elpreima 6935 |
. . . . . . . . . 10
⊢ (𝐹 Fn (Base‘𝑆) → (𝑏 ∈ (◡𝐹 “ 𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) |
26 | 18, 25 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑏 ∈ (◡𝐹 “ 𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) |
27 | 26 | adantr 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → (𝑏 ∈ (◡𝐹 “ 𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) |
28 | 7 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → 𝑆 ∈ Grp) |
29 | | simprll 776 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → 𝑎 ∈ (Base‘𝑆)) |
30 | | simprrl 778 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → 𝑏 ∈ (Base‘𝑆)) |
31 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝑆) = (+g‘𝑆) |
32 | 2, 31 | grpcl 18585 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎(+g‘𝑆)𝑏) ∈ (Base‘𝑆)) |
33 | 28, 29, 30, 32 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → (𝑎(+g‘𝑆)𝑏) ∈ (Base‘𝑆)) |
34 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
35 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑇) = (+g‘𝑇) |
36 | 2, 31, 35 | ghmlin 18839 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
37 | 34, 29, 30, 36 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → (𝐹‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
38 | | simplr 766 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → 𝑉 ∈ (SubGrp‘𝑇)) |
39 | | simprlr 777 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → (𝐹‘𝑎) ∈ 𝑉) |
40 | | simprrr 779 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → (𝐹‘𝑏) ∈ 𝑉) |
41 | 35 | subgcl 18765 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ (SubGrp‘𝑇) ∧ (𝐹‘𝑎) ∈ 𝑉 ∧ (𝐹‘𝑏) ∈ 𝑉) → ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏)) ∈ 𝑉) |
42 | 38, 39, 40, 41 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏)) ∈ 𝑉) |
43 | 37, 42 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → (𝐹‘(𝑎(+g‘𝑆)𝑏)) ∈ 𝑉) |
44 | | elpreima 6935 |
. . . . . . . . . . . 12
⊢ (𝐹 Fn (Base‘𝑆) → ((𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉) ↔ ((𝑎(+g‘𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g‘𝑆)𝑏)) ∈ 𝑉))) |
45 | 18, 44 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉) ↔ ((𝑎(+g‘𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g‘𝑆)𝑏)) ∈ 𝑉))) |
46 | 45 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → ((𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉) ↔ ((𝑎(+g‘𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g‘𝑆)𝑏)) ∈ 𝑉))) |
47 | 33, 43, 46 | mpbir2and 710 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉))) → (𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉)) |
48 | 47 | expr 457 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → ((𝑏 ∈ (Base‘𝑆) ∧ (𝐹‘𝑏) ∈ 𝑉) → (𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉))) |
49 | 27, 48 | sylbid 239 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → (𝑏 ∈ (◡𝐹 “ 𝑉) → (𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉))) |
50 | 49 | ralrimiv 3102 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → ∀𝑏 ∈ (◡𝐹 “ 𝑉)(𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉)) |
51 | | simprl 768 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → 𝑎 ∈ (Base‘𝑆)) |
52 | | eqid 2738 |
. . . . . . . . 9
⊢
(invg‘𝑆) = (invg‘𝑆) |
53 | 2, 52 | grpinvcl 18627 |
. . . . . . . 8
⊢ ((𝑆 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑆)) →
((invg‘𝑆)‘𝑎) ∈ (Base‘𝑆)) |
54 | 8, 51, 53 | syl2an2r 682 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → ((invg‘𝑆)‘𝑎) ∈ (Base‘𝑆)) |
55 | | eqid 2738 |
. . . . . . . . . 10
⊢
(invg‘𝑇) = (invg‘𝑇) |
56 | 2, 52, 55 | ghminv 18841 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘((invg‘𝑆)‘𝑎)) = ((invg‘𝑇)‘(𝐹‘𝑎))) |
57 | 56 | ad2ant2r 744 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → (𝐹‘((invg‘𝑆)‘𝑎)) = ((invg‘𝑇)‘(𝐹‘𝑎))) |
58 | 55 | subginvcl 18764 |
. . . . . . . . 9
⊢ ((𝑉 ∈ (SubGrp‘𝑇) ∧ (𝐹‘𝑎) ∈ 𝑉) → ((invg‘𝑇)‘(𝐹‘𝑎)) ∈ 𝑉) |
59 | 58 | ad2ant2l 743 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → ((invg‘𝑇)‘(𝐹‘𝑎)) ∈ 𝑉) |
60 | 57, 59 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → (𝐹‘((invg‘𝑆)‘𝑎)) ∈ 𝑉) |
61 | | elpreima 6935 |
. . . . . . . . 9
⊢ (𝐹 Fn (Base‘𝑆) →
(((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉) ↔ (((invg‘𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg‘𝑆)‘𝑎)) ∈ 𝑉))) |
62 | 18, 61 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉) ↔ (((invg‘𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg‘𝑆)‘𝑎)) ∈ 𝑉))) |
63 | 62 | adantr 481 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → (((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉) ↔ (((invg‘𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg‘𝑆)‘𝑎)) ∈ 𝑉))) |
64 | 54, 60, 63 | mpbir2and 710 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → ((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉)) |
65 | 50, 64 | jca 512 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉)) → (∀𝑏 ∈ (◡𝐹 “ 𝑉)(𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉) ∧ ((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉))) |
66 | 65 | ex 413 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹‘𝑎) ∈ 𝑉) → (∀𝑏 ∈ (◡𝐹 “ 𝑉)(𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉) ∧ ((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉)))) |
67 | 24, 66 | sylbid 239 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑎 ∈ (◡𝐹 “ 𝑉) → (∀𝑏 ∈ (◡𝐹 “ 𝑉)(𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉) ∧ ((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉)))) |
68 | 67 | ralrimiv 3102 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ∀𝑎 ∈ (◡𝐹 “ 𝑉)(∀𝑏 ∈ (◡𝐹 “ 𝑉)(𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉) ∧ ((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉))) |
69 | 2, 31, 52 | issubg2 18770 |
. . 3
⊢ (𝑆 ∈ Grp → ((◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆) ↔ ((◡𝐹 “ 𝑉) ⊆ (Base‘𝑆) ∧ (◡𝐹 “ 𝑉) ≠ ∅ ∧ ∀𝑎 ∈ (◡𝐹 “ 𝑉)(∀𝑏 ∈ (◡𝐹 “ 𝑉)(𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉) ∧ ((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉))))) |
70 | 8, 69 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆) ↔ ((◡𝐹 “ 𝑉) ⊆ (Base‘𝑆) ∧ (◡𝐹 “ 𝑉) ≠ ∅ ∧ ∀𝑎 ∈ (◡𝐹 “ 𝑉)(∀𝑏 ∈ (◡𝐹 “ 𝑉)(𝑎(+g‘𝑆)𝑏) ∈ (◡𝐹 “ 𝑉) ∧ ((invg‘𝑆)‘𝑎) ∈ (◡𝐹 “ 𝑉))))) |
71 | 6, 22, 68, 70 | mpbir3and 1341 |
1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) |