MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmpreima Structured version   Visualization version   GIF version

Theorem ghmpreima 18382
Description: The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmpreima ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))

Proof of Theorem ghmpreima
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5951 . . 3 (𝐹𝑉) ⊆ dom 𝐹
2 eqid 2823 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2823 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
42, 3ghmf 18364 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
54adantr 483 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
61, 5fssdm 6532 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ⊆ (Base‘𝑆))
7 ghmgrp1 18362 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
87adantr 483 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝑆 ∈ Grp)
9 eqid 2823 . . . . . 6 (0g𝑆) = (0g𝑆)
102, 9grpidcl 18133 . . . . 5 (𝑆 ∈ Grp → (0g𝑆) ∈ (Base‘𝑆))
118, 10syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g𝑆) ∈ (Base‘𝑆))
12 eqid 2823 . . . . . . 7 (0g𝑇) = (0g𝑇)
139, 12ghmid 18366 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
1413adantr 483 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹‘(0g𝑆)) = (0g𝑇))
1512subg0cl 18289 . . . . . 6 (𝑉 ∈ (SubGrp‘𝑇) → (0g𝑇) ∈ 𝑉)
1615adantl 484 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g𝑇) ∈ 𝑉)
1714, 16eqeltrd 2915 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹‘(0g𝑆)) ∈ 𝑉)
185ffnd 6517 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → 𝐹 Fn (Base‘𝑆))
19 elpreima 6830 . . . . 5 (𝐹 Fn (Base‘𝑆) → ((0g𝑆) ∈ (𝐹𝑉) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ 𝑉)))
2018, 19syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((0g𝑆) ∈ (𝐹𝑉) ↔ ((0g𝑆) ∈ (Base‘𝑆) ∧ (𝐹‘(0g𝑆)) ∈ 𝑉)))
2111, 17, 20mpbir2and 711 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (0g𝑆) ∈ (𝐹𝑉))
2221ne0d 4303 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ≠ ∅)
23 elpreima 6830 . . . . 5 (𝐹 Fn (Base‘𝑆) → (𝑎 ∈ (𝐹𝑉) ↔ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)))
2418, 23syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑎 ∈ (𝐹𝑉) ↔ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)))
25 elpreima 6830 . . . . . . . . . 10 (𝐹 Fn (Base‘𝑆) → (𝑏 ∈ (𝐹𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉)))
2618, 25syl 17 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑏 ∈ (𝐹𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉)))
2726adantr 483 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝑏 ∈ (𝐹𝑉) ↔ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉)))
287ad2antrr 724 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑆 ∈ Grp)
29 simprll 777 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑎 ∈ (Base‘𝑆))
30 simprrl 779 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑏 ∈ (Base‘𝑆))
31 eqid 2823 . . . . . . . . . . . 12 (+g𝑆) = (+g𝑆)
322, 31grpcl 18113 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆))
3328, 29, 30, 32syl3anc 1367 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆))
34 simpll 765 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
35 eqid 2823 . . . . . . . . . . . . 13 (+g𝑇) = (+g𝑇)
362, 31, 35ghmlin 18365 . . . . . . . . . . . 12 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
3734, 29, 30, 36syl3anc 1367 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
38 simplr 767 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → 𝑉 ∈ (SubGrp‘𝑇))
39 simprlr 778 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹𝑎) ∈ 𝑉)
40 simprrr 780 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹𝑏) ∈ 𝑉)
4135subgcl 18291 . . . . . . . . . . . 12 ((𝑉 ∈ (SubGrp‘𝑇) ∧ (𝐹𝑎) ∈ 𝑉 ∧ (𝐹𝑏) ∈ 𝑉) → ((𝐹𝑎)(+g𝑇)(𝐹𝑏)) ∈ 𝑉)
4238, 39, 40, 41syl3anc 1367 . . . . . . . . . . 11 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → ((𝐹𝑎)(+g𝑇)(𝐹𝑏)) ∈ 𝑉)
4337, 42eqeltrd 2915 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)
44 elpreima 6830 . . . . . . . . . . . 12 (𝐹 Fn (Base‘𝑆) → ((𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ↔ ((𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)))
4518, 44syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ↔ ((𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)))
4645adantr 483 . . . . . . . . . 10 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → ((𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ↔ ((𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆) ∧ (𝐹‘(𝑎(+g𝑆)𝑏)) ∈ 𝑉)))
4733, 43, 46mpbir2and 711 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) ∧ (𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉))) → (𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉))
4847expr 459 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((𝑏 ∈ (Base‘𝑆) ∧ (𝐹𝑏) ∈ 𝑉) → (𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉)))
4927, 48sylbid 242 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝑏 ∈ (𝐹𝑉) → (𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉)))
5049ralrimiv 3183 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉))
51 simprl 769 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → 𝑎 ∈ (Base‘𝑆))
52 eqid 2823 . . . . . . . . 9 (invg𝑆) = (invg𝑆)
532, 52grpinvcl 18153 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑎) ∈ (Base‘𝑆))
548, 51, 53syl2an2r 683 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((invg𝑆)‘𝑎) ∈ (Base‘𝑆))
55 eqid 2823 . . . . . . . . . 10 (invg𝑇) = (invg𝑇)
562, 52, 55ghminv 18367 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑎)) = ((invg𝑇)‘(𝐹𝑎)))
5756ad2ant2r 745 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝐹‘((invg𝑆)‘𝑎)) = ((invg𝑇)‘(𝐹𝑎)))
5855subginvcl 18290 . . . . . . . . 9 ((𝑉 ∈ (SubGrp‘𝑇) ∧ (𝐹𝑎) ∈ 𝑉) → ((invg𝑇)‘(𝐹𝑎)) ∈ 𝑉)
5958ad2ant2l 744 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((invg𝑇)‘(𝐹𝑎)) ∈ 𝑉)
6057, 59eqeltrd 2915 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)
61 elpreima 6830 . . . . . . . . 9 (𝐹 Fn (Base‘𝑆) → (((invg𝑆)‘𝑎) ∈ (𝐹𝑉) ↔ (((invg𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)))
6218, 61syl 17 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (((invg𝑆)‘𝑎) ∈ (𝐹𝑉) ↔ (((invg𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)))
6362adantr 483 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (((invg𝑆)‘𝑎) ∈ (𝐹𝑉) ↔ (((invg𝑆)‘𝑎) ∈ (Base‘𝑆) ∧ (𝐹‘((invg𝑆)‘𝑎)) ∈ 𝑉)))
6454, 60, 63mpbir2and 711 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → ((invg𝑆)‘𝑎) ∈ (𝐹𝑉))
6550, 64jca 514 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) ∧ (𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉)) → (∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))
6665ex 415 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝑎 ∈ (Base‘𝑆) ∧ (𝐹𝑎) ∈ 𝑉) → (∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉))))
6724, 66sylbid 242 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝑎 ∈ (𝐹𝑉) → (∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉))))
6867ralrimiv 3183 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ∀𝑎 ∈ (𝐹𝑉)(∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))
692, 31, 52issubg2 18296 . . 3 (𝑆 ∈ Grp → ((𝐹𝑉) ∈ (SubGrp‘𝑆) ↔ ((𝐹𝑉) ⊆ (Base‘𝑆) ∧ (𝐹𝑉) ≠ ∅ ∧ ∀𝑎 ∈ (𝐹𝑉)(∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))))
708, 69syl 17 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → ((𝐹𝑉) ∈ (SubGrp‘𝑆) ↔ ((𝐹𝑉) ⊆ (Base‘𝑆) ∧ (𝐹𝑉) ≠ ∅ ∧ ∀𝑎 ∈ (𝐹𝑉)(∀𝑏 ∈ (𝐹𝑉)(𝑎(+g𝑆)𝑏) ∈ (𝐹𝑉) ∧ ((invg𝑆)‘𝑎) ∈ (𝐹𝑉)))))
716, 22, 68, 70mpbir3and 1338 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (𝐹𝑉) ∈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wss 3938  c0 4293  ccnv 5556  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Grpcgrp 18105  invgcminusg 18106  SubGrpcsubg 18275   GrpHom cghm 18357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-subg 18278  df-ghm 18358
This theorem is referenced by:  ghmnsgpreima  18385  subggim  18408  gicsubgen  18420  lmhmpreima  19822  evpmsubg  30791
  Copyright terms: Public domain W3C validator