Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzsub Structured version   Visualization version   GIF version

Theorem zlmodzxzsub 47026
Description: The subtraction of the -module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzsub.m = (-g𝑍)
Assertion
Ref Expression
zlmodzxzsub (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩})

Proof of Theorem zlmodzxzsub
StepHypRef Expression
1 zsubcl 12603 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
2 simpr 485 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
31, 2jca 512 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
4 zsubcl 12603 . . . . 5 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶𝐷) ∈ ℤ)
5 simpr 485 . . . . 5 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
64, 5jca 512 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ))
7 zlmodzxz.z . . . . 5 𝑍 = (ℤring freeLMod {0, 1})
8 eqid 2732 . . . . 5 (+g𝑍) = (+g𝑍)
97, 8zlmodzxzadd 47024 . . . 4 ((((𝐴𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐶𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩})
103, 6, 9syl2an 596 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩})
11 zcn 12562 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
12 zcn 12562 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
13 npcan 11468 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + 𝐵) = 𝐴)
1411, 12, 13syl2an 596 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵) + 𝐵) = 𝐴)
1514adantr 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴𝐵) + 𝐵) = 𝐴)
1615opeq2d 4880 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ⟨0, ((𝐴𝐵) + 𝐵)⟩ = ⟨0, 𝐴⟩)
17 zcn 12562 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
18 zcn 12562 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
19 npcan 11468 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷) + 𝐷) = 𝐶)
2017, 18, 19syl2an 596 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶𝐷) + 𝐷) = 𝐶)
2120adantl 482 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐶𝐷) + 𝐷) = 𝐶)
2221opeq2d 4880 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ⟨1, ((𝐶𝐷) + 𝐷)⟩ = ⟨1, 𝐶⟩)
2316, 22preq12d 4745 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩} = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩})
2410, 23eqtrd 2772 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩})
257zlmodzxzlmod 47020 . . . 4 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
26 lmodgrp 20477 . . . . 5 (𝑍 ∈ LMod → 𝑍 ∈ Grp)
2726adantr 481 . . . 4 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ Grp)
2825, 27mp1i 13 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ Grp)
297zlmodzxzel 47021 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
3029ad2ant2r 745 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
317zlmodzxzel 47021 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
322, 5, 31syl2an 596 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
337zlmodzxzel 47021 . . . 4 (((𝐴𝐵) ∈ ℤ ∧ (𝐶𝐷) ∈ ℤ) → {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))
341, 4, 33syl2an 596 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))
35 eqid 2732 . . . 4 (Base‘𝑍) = (Base‘𝑍)
36 zlmodzxzsub.m . . . 4 = (-g𝑍)
3735, 8, 36grpsubadd 18910 . . 3 ((𝑍 ∈ Grp ∧ ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍) ∧ {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍) ∧ {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ↔ ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩}))
3828, 30, 32, 34, 37syl13anc 1372 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ↔ ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩}))
3924, 38mpbird 256 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cpr 4630  cop 4634  cfv 6543  (class class class)co 7408  cc 11107  0cc0 11109  1c1 11110   + caddc 11112  cmin 11443  cz 12557  Basecbs 17143  +gcplusg 17196  Scalarcsca 17199  Grpcgrp 18818  -gcsg 18820  LModclmod 20470  ringczring 21016   freeLMod cfrlm 21300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17386  df-prds 17392  df-pws 17394  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-minusg 18822  df-sbg 18823  df-subg 19002  df-cmn 19649  df-mgp 19987  df-ur 20004  df-ring 20057  df-cring 20058  df-subrg 20316  df-lmod 20472  df-lss 20542  df-sra 20784  df-rgmod 20785  df-cnfld 20944  df-zring 21017  df-dsmm 21286  df-frlm 21301
This theorem is referenced by:  zlmodzxzequa  47167
  Copyright terms: Public domain W3C validator