Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzsub | Structured version Visualization version GIF version |
Description: The subtraction of the ℤ-module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzsub.m | ⊢ − = (-g‘𝑍) |
Ref | Expression |
---|---|
zlmodzxzsub | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubcl 12362 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
2 | simpr 485 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
3 | 1, 2 | jca 512 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 − 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
4 | zsubcl 12362 | . . . . 5 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 − 𝐷) ∈ ℤ) | |
5 | simpr 485 | . . . . 5 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ) | |
6 | 4, 5 | jca 512 | . . . 4 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 − 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) |
7 | zlmodzxz.z | . . . . 5 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
8 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑍) = (+g‘𝑍) | |
9 | 7, 8 | zlmodzxzadd 45694 | . . . 4 ⊢ ((((𝐴 − 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐶 − 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, ((𝐴 − 𝐵) + 𝐵)〉, 〈1, ((𝐶 − 𝐷) + 𝐷)〉}) |
10 | 3, 6, 9 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, ((𝐴 − 𝐵) + 𝐵)〉, 〈1, ((𝐶 − 𝐷) + 𝐷)〉}) |
11 | zcn 12324 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
12 | zcn 12324 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
13 | npcan 11230 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | |
14 | 11, 12, 13 | syl2an 596 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
15 | 14 | adantr 481 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
16 | 15 | opeq2d 4811 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 〈0, ((𝐴 − 𝐵) + 𝐵)〉 = 〈0, 𝐴〉) |
17 | zcn 12324 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℂ) | |
18 | zcn 12324 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
19 | npcan 11230 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶 − 𝐷) + 𝐷) = 𝐶) | |
20 | 17, 18, 19 | syl2an 596 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 − 𝐷) + 𝐷) = 𝐶) |
21 | 20 | adantl 482 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐶 − 𝐷) + 𝐷) = 𝐶) |
22 | 21 | opeq2d 4811 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 〈1, ((𝐶 − 𝐷) + 𝐷)〉 = 〈1, 𝐶〉) |
23 | 16, 22 | preq12d 4677 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, ((𝐴 − 𝐵) + 𝐵)〉, 〈1, ((𝐶 − 𝐷) + 𝐷)〉} = {〈0, 𝐴〉, 〈1, 𝐶〉}) |
24 | 10, 23 | eqtrd 2778 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, 𝐴〉, 〈1, 𝐶〉}) |
25 | 7 | zlmodzxzlmod 45690 | . . . 4 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
26 | lmodgrp 20130 | . . . . 5 ⊢ (𝑍 ∈ LMod → 𝑍 ∈ Grp) | |
27 | 26 | adantr 481 | . . . 4 ⊢ ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ Grp) |
28 | 25, 27 | mp1i 13 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ Grp) |
29 | 7 | zlmodzxzel 45691 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
30 | 29 | ad2ant2r 744 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
31 | 7 | zlmodzxzel 45691 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
32 | 2, 5, 31 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
33 | 7 | zlmodzxzel 45691 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℤ ∧ (𝐶 − 𝐷) ∈ ℤ) → {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ∈ (Base‘𝑍)) |
34 | 1, 4, 33 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ∈ (Base‘𝑍)) |
35 | eqid 2738 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
36 | zlmodzxzsub.m | . . . 4 ⊢ − = (-g‘𝑍) | |
37 | 35, 8, 36 | grpsubadd 18663 | . . 3 ⊢ ((𝑍 ∈ Grp ∧ ({〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍) ∧ {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍) ∧ {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ∈ (Base‘𝑍))) → (({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ↔ ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, 𝐴〉, 〈1, 𝐶〉})) |
38 | 28, 30, 32, 34, 37 | syl13anc 1371 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ↔ ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, 𝐴〉, 〈1, 𝐶〉})) |
39 | 24, 38 | mpbird 256 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cpr 4563 〈cop 4567 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 − cmin 11205 ℤcz 12319 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 Grpcgrp 18577 -gcsg 18579 LModclmod 20123 ℤringczring 20670 freeLMod cfrlm 20953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-0g 17152 df-prds 17158 df-pws 17160 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-subrg 20022 df-lmod 20125 df-lss 20194 df-sra 20434 df-rgmod 20435 df-cnfld 20598 df-zring 20671 df-dsmm 20939 df-frlm 20954 |
This theorem is referenced by: zlmodzxzequa 45837 |
Copyright terms: Public domain | W3C validator |