Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzsub Structured version   Visualization version   GIF version

Theorem zlmodzxzsub 48370
Description: The subtraction of the -module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzsub.m = (-g𝑍)
Assertion
Ref Expression
zlmodzxzsub (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩})

Proof of Theorem zlmodzxzsub
StepHypRef Expression
1 zsubcl 12506 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
2 simpr 484 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
31, 2jca 511 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
4 zsubcl 12506 . . . . 5 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶𝐷) ∈ ℤ)
5 simpr 484 . . . . 5 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
64, 5jca 511 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ))
7 zlmodzxz.z . . . . 5 𝑍 = (ℤring freeLMod {0, 1})
8 eqid 2730 . . . . 5 (+g𝑍) = (+g𝑍)
97, 8zlmodzxzadd 48368 . . . 4 ((((𝐴𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐶𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩})
103, 6, 9syl2an 596 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩})
11 zcn 12465 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
12 zcn 12465 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
13 npcan 11361 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + 𝐵) = 𝐴)
1411, 12, 13syl2an 596 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵) + 𝐵) = 𝐴)
1514adantr 480 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴𝐵) + 𝐵) = 𝐴)
1615opeq2d 4830 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ⟨0, ((𝐴𝐵) + 𝐵)⟩ = ⟨0, 𝐴⟩)
17 zcn 12465 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
18 zcn 12465 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
19 npcan 11361 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷) + 𝐷) = 𝐶)
2017, 18, 19syl2an 596 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶𝐷) + 𝐷) = 𝐶)
2120adantl 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐶𝐷) + 𝐷) = 𝐶)
2221opeq2d 4830 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ⟨1, ((𝐶𝐷) + 𝐷)⟩ = ⟨1, 𝐶⟩)
2316, 22preq12d 4692 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩} = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩})
2410, 23eqtrd 2765 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩})
257zlmodzxzlmod 48364 . . . 4 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
26 lmodgrp 20793 . . . . 5 (𝑍 ∈ LMod → 𝑍 ∈ Grp)
2726adantr 480 . . . 4 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ Grp)
2825, 27mp1i 13 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ Grp)
297zlmodzxzel 48365 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
3029ad2ant2r 747 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
317zlmodzxzel 48365 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
322, 5, 31syl2an 596 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
337zlmodzxzel 48365 . . . 4 (((𝐴𝐵) ∈ ℤ ∧ (𝐶𝐷) ∈ ℤ) → {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))
341, 4, 33syl2an 596 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))
35 eqid 2730 . . . 4 (Base‘𝑍) = (Base‘𝑍)
36 zlmodzxzsub.m . . . 4 = (-g𝑍)
3735, 8, 36grpsubadd 18933 . . 3 ((𝑍 ∈ Grp ∧ ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍) ∧ {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍) ∧ {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ↔ ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩}))
3828, 30, 32, 34, 37syl13anc 1374 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ↔ ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩}))
3924, 38mpbird 257 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  {cpr 4576  cop 4580  cfv 6477  (class class class)co 7341  cc 10996  0cc0 10998  1c1 10999   + caddc 11001  cmin 11336  cz 12460  Basecbs 17112  +gcplusg 17153  Scalarcsca 17156  Grpcgrp 18838  -gcsg 18840  LModclmod 20786  ringczring 21376   freeLMod cfrlm 21676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-0g 17337  df-prds 17343  df-pws 17345  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-sra 21100  df-rgmod 21101  df-cnfld 21285  df-zring 21377  df-dsmm 21662  df-frlm 21677
This theorem is referenced by:  zlmodzxzequa  48507
  Copyright terms: Public domain W3C validator