Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzsub Structured version   Visualization version   GIF version

Theorem zlmodzxzsub 47610
Description: The subtraction of the -module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzsub.m = (-g𝑍)
Assertion
Ref Expression
zlmodzxzsub (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩})

Proof of Theorem zlmodzxzsub
StepHypRef Expression
1 zsubcl 12637 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
2 simpr 483 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
31, 2jca 510 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
4 zsubcl 12637 . . . . 5 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶𝐷) ∈ ℤ)
5 simpr 483 . . . . 5 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
64, 5jca 510 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ))
7 zlmodzxz.z . . . . 5 𝑍 = (ℤring freeLMod {0, 1})
8 eqid 2725 . . . . 5 (+g𝑍) = (+g𝑍)
97, 8zlmodzxzadd 47608 . . . 4 ((((𝐴𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐶𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩})
103, 6, 9syl2an 594 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩})
11 zcn 12596 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
12 zcn 12596 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
13 npcan 11501 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + 𝐵) = 𝐴)
1411, 12, 13syl2an 594 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵) + 𝐵) = 𝐴)
1514adantr 479 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴𝐵) + 𝐵) = 𝐴)
1615opeq2d 4882 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ⟨0, ((𝐴𝐵) + 𝐵)⟩ = ⟨0, 𝐴⟩)
17 zcn 12596 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
18 zcn 12596 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
19 npcan 11501 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷) + 𝐷) = 𝐶)
2017, 18, 19syl2an 594 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶𝐷) + 𝐷) = 𝐶)
2120adantl 480 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐶𝐷) + 𝐷) = 𝐶)
2221opeq2d 4882 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ⟨1, ((𝐶𝐷) + 𝐷)⟩ = ⟨1, 𝐶⟩)
2316, 22preq12d 4747 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩} = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩})
2410, 23eqtrd 2765 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩})
257zlmodzxzlmod 47604 . . . 4 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
26 lmodgrp 20762 . . . . 5 (𝑍 ∈ LMod → 𝑍 ∈ Grp)
2726adantr 479 . . . 4 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ Grp)
2825, 27mp1i 13 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ Grp)
297zlmodzxzel 47605 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
3029ad2ant2r 745 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
317zlmodzxzel 47605 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
322, 5, 31syl2an 594 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
337zlmodzxzel 47605 . . . 4 (((𝐴𝐵) ∈ ℤ ∧ (𝐶𝐷) ∈ ℤ) → {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))
341, 4, 33syl2an 594 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))
35 eqid 2725 . . . 4 (Base‘𝑍) = (Base‘𝑍)
36 zlmodzxzsub.m . . . 4 = (-g𝑍)
3735, 8, 36grpsubadd 18992 . . 3 ((𝑍 ∈ Grp ∧ ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍) ∧ {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍) ∧ {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ↔ ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩}))
3828, 30, 32, 34, 37syl13anc 1369 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ↔ ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩}))
3924, 38mpbird 256 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {cpr 4632  cop 4636  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140  1c1 11141   + caddc 11143  cmin 11476  cz 12591  Basecbs 17183  +gcplusg 17236  Scalarcsca 17239  Grpcgrp 18898  -gcsg 18900  LModclmod 20755  ringczring 21389   freeLMod cfrlm 21697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-0g 17426  df-prds 17432  df-pws 17434  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-cnfld 21297  df-zring 21390  df-dsmm 21683  df-frlm 21698
This theorem is referenced by:  zlmodzxzequa  47750
  Copyright terms: Public domain W3C validator