| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzsub | Structured version Visualization version GIF version | ||
| Description: The subtraction of the ℤ-module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzsub.m | ⊢ − = (-g‘𝑍) |
| Ref | Expression |
|---|---|
| zlmodzxzsub | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl 12554 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 − 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 4 | zsubcl 12554 | . . . . 5 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 − 𝐷) ∈ ℤ) | |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ) | |
| 6 | 4, 5 | jca 511 | . . . 4 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 − 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) |
| 7 | zlmodzxz.z | . . . . 5 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑍) = (+g‘𝑍) | |
| 9 | 7, 8 | zlmodzxzadd 48341 | . . . 4 ⊢ ((((𝐴 − 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐶 − 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, ((𝐴 − 𝐵) + 𝐵)〉, 〈1, ((𝐶 − 𝐷) + 𝐷)〉}) |
| 10 | 3, 6, 9 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, ((𝐴 − 𝐵) + 𝐵)〉, 〈1, ((𝐶 − 𝐷) + 𝐷)〉}) |
| 11 | zcn 12513 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 12 | zcn 12513 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
| 13 | npcan 11409 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | |
| 14 | 11, 12, 13 | syl2an 596 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| 16 | 15 | opeq2d 4840 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 〈0, ((𝐴 − 𝐵) + 𝐵)〉 = 〈0, 𝐴〉) |
| 17 | zcn 12513 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℂ) | |
| 18 | zcn 12513 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
| 19 | npcan 11409 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶 − 𝐷) + 𝐷) = 𝐶) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 − 𝐷) + 𝐷) = 𝐶) |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐶 − 𝐷) + 𝐷) = 𝐶) |
| 22 | 21 | opeq2d 4840 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 〈1, ((𝐶 − 𝐷) + 𝐷)〉 = 〈1, 𝐶〉) |
| 23 | 16, 22 | preq12d 4701 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, ((𝐴 − 𝐵) + 𝐵)〉, 〈1, ((𝐶 − 𝐷) + 𝐷)〉} = {〈0, 𝐴〉, 〈1, 𝐶〉}) |
| 24 | 10, 23 | eqtrd 2764 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, 𝐴〉, 〈1, 𝐶〉}) |
| 25 | 7 | zlmodzxzlmod 48337 | . . . 4 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
| 26 | lmodgrp 20807 | . . . . 5 ⊢ (𝑍 ∈ LMod → 𝑍 ∈ Grp) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ Grp) |
| 28 | 25, 27 | mp1i 13 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ Grp) |
| 29 | 7 | zlmodzxzel 48338 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
| 30 | 29 | ad2ant2r 747 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
| 31 | 7 | zlmodzxzel 48338 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
| 32 | 2, 5, 31 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
| 33 | 7 | zlmodzxzel 48338 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℤ ∧ (𝐶 − 𝐷) ∈ ℤ) → {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ∈ (Base‘𝑍)) |
| 34 | 1, 4, 33 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ∈ (Base‘𝑍)) |
| 35 | eqid 2729 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 36 | zlmodzxzsub.m | . . . 4 ⊢ − = (-g‘𝑍) | |
| 37 | 35, 8, 36 | grpsubadd 18944 | . . 3 ⊢ ((𝑍 ∈ Grp ∧ ({〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍) ∧ {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍) ∧ {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ∈ (Base‘𝑍))) → (({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ↔ ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, 𝐴〉, 〈1, 𝐶〉})) |
| 38 | 28, 30, 32, 34, 37 | syl13anc 1374 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ↔ ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, 𝐴〉, 〈1, 𝐶〉})) |
| 39 | 24, 38 | mpbird 257 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cpr 4587 〈cop 4591 ‘cfv 6500 (class class class)co 7370 ℂcc 11045 0cc0 11047 1c1 11048 + caddc 11050 − cmin 11384 ℤcz 12508 Basecbs 17157 +gcplusg 17198 Scalarcsca 17201 Grpcgrp 18849 -gcsg 18851 LModclmod 20800 ℤringczring 21390 freeLMod cfrlm 21690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-addf 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8649 df-map 8779 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-sup 9370 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-starv 17213 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-hom 17222 df-cco 17223 df-0g 17382 df-prds 17388 df-pws 17390 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-grp 18852 df-minusg 18853 df-sbg 18854 df-subg 19039 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-subrng 20468 df-subrg 20492 df-lmod 20802 df-lss 20872 df-sra 21114 df-rgmod 21115 df-cnfld 21299 df-zring 21391 df-dsmm 21676 df-frlm 21691 |
| This theorem is referenced by: zlmodzxzequa 48480 |
| Copyright terms: Public domain | W3C validator |