| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzsub | Structured version Visualization version GIF version | ||
| Description: The subtraction of the ℤ-module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxz.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzsub.m | ⊢ − = (-g‘𝑍) |
| Ref | Expression |
|---|---|
| zlmodzxzsub | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl 12582 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 − 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 4 | zsubcl 12582 | . . . . 5 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 − 𝐷) ∈ ℤ) | |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ) | |
| 6 | 4, 5 | jca 511 | . . . 4 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 − 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) |
| 7 | zlmodzxz.z | . . . . 5 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (+g‘𝑍) = (+g‘𝑍) | |
| 9 | 7, 8 | zlmodzxzadd 48350 | . . . 4 ⊢ ((((𝐴 − 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐶 − 𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, ((𝐴 − 𝐵) + 𝐵)〉, 〈1, ((𝐶 − 𝐷) + 𝐷)〉}) |
| 10 | 3, 6, 9 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, ((𝐴 − 𝐵) + 𝐵)〉, 〈1, ((𝐶 − 𝐷) + 𝐷)〉}) |
| 11 | zcn 12541 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 12 | zcn 12541 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
| 13 | npcan 11437 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | |
| 14 | 11, 12, 13 | syl2an 596 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| 16 | 15 | opeq2d 4847 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 〈0, ((𝐴 − 𝐵) + 𝐵)〉 = 〈0, 𝐴〉) |
| 17 | zcn 12541 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℂ) | |
| 18 | zcn 12541 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → 𝐷 ∈ ℂ) | |
| 19 | npcan 11437 | . . . . . . 7 ⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶 − 𝐷) + 𝐷) = 𝐶) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶 − 𝐷) + 𝐷) = 𝐶) |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐶 − 𝐷) + 𝐷) = 𝐶) |
| 22 | 21 | opeq2d 4847 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 〈1, ((𝐶 − 𝐷) + 𝐷)〉 = 〈1, 𝐶〉) |
| 23 | 16, 22 | preq12d 4708 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, ((𝐴 − 𝐵) + 𝐵)〉, 〈1, ((𝐶 − 𝐷) + 𝐷)〉} = {〈0, 𝐴〉, 〈1, 𝐶〉}) |
| 24 | 10, 23 | eqtrd 2765 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, 𝐴〉, 〈1, 𝐶〉}) |
| 25 | 7 | zlmodzxzlmod 48346 | . . . 4 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
| 26 | lmodgrp 20780 | . . . . 5 ⊢ (𝑍 ∈ LMod → 𝑍 ∈ Grp) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ Grp) |
| 28 | 25, 27 | mp1i 13 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ Grp) |
| 29 | 7 | zlmodzxzel 48347 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
| 30 | 29 | ad2ant2r 747 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍)) |
| 31 | 7 | zlmodzxzel 48347 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
| 32 | 2, 5, 31 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍)) |
| 33 | 7 | zlmodzxzel 48347 | . . . 4 ⊢ (((𝐴 − 𝐵) ∈ ℤ ∧ (𝐶 − 𝐷) ∈ ℤ) → {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ∈ (Base‘𝑍)) |
| 34 | 1, 4, 33 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ∈ (Base‘𝑍)) |
| 35 | eqid 2730 | . . . 4 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 36 | zlmodzxzsub.m | . . . 4 ⊢ − = (-g‘𝑍) | |
| 37 | 35, 8, 36 | grpsubadd 18967 | . . 3 ⊢ ((𝑍 ∈ Grp ∧ ({〈0, 𝐴〉, 〈1, 𝐶〉} ∈ (Base‘𝑍) ∧ {〈0, 𝐵〉, 〈1, 𝐷〉} ∈ (Base‘𝑍) ∧ {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ∈ (Base‘𝑍))) → (({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ↔ ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, 𝐴〉, 〈1, 𝐶〉})) |
| 38 | 28, 30, 32, 34, 37 | syl13anc 1374 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} ↔ ({〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉} (+g‘𝑍){〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, 𝐴〉, 〈1, 𝐶〉})) |
| 39 | 24, 38 | mpbird 257 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({〈0, 𝐴〉, 〈1, 𝐶〉} − {〈0, 𝐵〉, 〈1, 𝐷〉}) = {〈0, (𝐴 − 𝐵)〉, 〈1, (𝐶 − 𝐷)〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cpr 4594 〈cop 4598 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 − cmin 11412 ℤcz 12536 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 Grpcgrp 18872 -gcsg 18874 LModclmod 20773 ℤringczring 21363 freeLMod cfrlm 21662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-zring 21364 df-dsmm 21648 df-frlm 21663 |
| This theorem is referenced by: zlmodzxzequa 48489 |
| Copyright terms: Public domain | W3C validator |