Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzsub Structured version   Visualization version   GIF version

Theorem zlmodzxzsub 45400
Description: The subtraction of the -module ℤ × ℤ. (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzsub.m = (-g𝑍)
Assertion
Ref Expression
zlmodzxzsub (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩})

Proof of Theorem zlmodzxzsub
StepHypRef Expression
1 zsubcl 12244 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
2 simpr 488 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
31, 2jca 515 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
4 zsubcl 12244 . . . . 5 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶𝐷) ∈ ℤ)
5 simpr 488 . . . . 5 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
64, 5jca 515 . . . 4 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ))
7 zlmodzxz.z . . . . 5 𝑍 = (ℤring freeLMod {0, 1})
8 eqid 2738 . . . . 5 (+g𝑍) = (+g𝑍)
97, 8zlmodzxzadd 45398 . . . 4 ((((𝐴𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐶𝐷) ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩})
103, 6, 9syl2an 599 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩})
11 zcn 12206 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
12 zcn 12206 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
13 npcan 11112 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + 𝐵) = 𝐴)
1411, 12, 13syl2an 599 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵) + 𝐵) = 𝐴)
1514adantr 484 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐴𝐵) + 𝐵) = 𝐴)
1615opeq2d 4806 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ⟨0, ((𝐴𝐵) + 𝐵)⟩ = ⟨0, 𝐴⟩)
17 zcn 12206 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
18 zcn 12206 . . . . . . 7 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
19 npcan 11112 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷) + 𝐷) = 𝐶)
2017, 18, 19syl2an 599 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝐶𝐷) + 𝐷) = 𝐶)
2120adantl 485 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((𝐶𝐷) + 𝐷) = 𝐶)
2221opeq2d 4806 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ⟨1, ((𝐶𝐷) + 𝐷)⟩ = ⟨1, 𝐶⟩)
2316, 22preq12d 4672 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, ((𝐴𝐵) + 𝐵)⟩, ⟨1, ((𝐶𝐷) + 𝐷)⟩} = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩})
2410, 23eqtrd 2778 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩})
257zlmodzxzlmod 45394 . . . 4 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
26 lmodgrp 19934 . . . . 5 (𝑍 ∈ LMod → 𝑍 ∈ Grp)
2726adantr 484 . . . 4 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ Grp)
2825, 27mp1i 13 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ Grp)
297zlmodzxzel 45395 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
3029ad2ant2r 747 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
317zlmodzxzel 45395 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
322, 5, 31syl2an 599 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
337zlmodzxzel 45395 . . . 4 (((𝐴𝐵) ∈ ℤ ∧ (𝐶𝐷) ∈ ℤ) → {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))
341, 4, 33syl2an 599 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))
35 eqid 2738 . . . 4 (Base‘𝑍) = (Base‘𝑍)
36 zlmodzxzsub.m . . . 4 = (-g𝑍)
3735, 8, 36grpsubadd 18479 . . 3 ((𝑍 ∈ Grp ∧ ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍) ∧ {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍) ∧ {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ∈ (Base‘𝑍))) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ↔ ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩}))
3828, 30, 32, 34, 37syl13anc 1374 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} ↔ ({⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩} (+g𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐶⟩}))
3924, 38mpbird 260 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = {⟨0, (𝐴𝐵)⟩, ⟨1, (𝐶𝐷)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111  {cpr 4558  cop 4562  cfv 6398  (class class class)co 7232  cc 10752  0cc0 10754  1c1 10755   + caddc 10757  cmin 11087  cz 12201  Basecbs 16788  +gcplusg 16830  Scalarcsca 16833  Grpcgrp 18393  -gcsg 18395  LModclmod 19927  ringzring 20463   freeLMod cfrlm 20736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-addf 10833  ax-mulf 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-of 7488  df-om 7664  df-1st 7780  df-2nd 7781  df-supp 7925  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-er 8412  df-map 8531  df-ixp 8600  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-fsupp 9011  df-sup 9083  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-9 11925  df-n0 12116  df-z 12202  df-dec 12319  df-uz 12464  df-fz 13121  df-struct 16728  df-sets 16745  df-slot 16763  df-ndx 16773  df-base 16789  df-ress 16813  df-plusg 16843  df-mulr 16844  df-starv 16845  df-sca 16846  df-vsca 16847  df-ip 16848  df-tset 16849  df-ple 16850  df-ds 16852  df-unif 16853  df-hom 16854  df-cco 16855  df-0g 16974  df-prds 16980  df-pws 16982  df-mgm 18142  df-sgrp 18191  df-mnd 18202  df-grp 18396  df-minusg 18397  df-sbg 18398  df-subg 18568  df-cmn 19200  df-mgp 19533  df-ur 19545  df-ring 19592  df-cring 19593  df-subrg 19826  df-lmod 19929  df-lss 19997  df-sra 20237  df-rgmod 20238  df-cnfld 20392  df-zring 20464  df-dsmm 20722  df-frlm 20737
This theorem is referenced by:  zlmodzxzequa  45541
  Copyright terms: Public domain W3C validator