MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1subfv Structured version   Visualization version   GIF version

Theorem coe1subfv 20426
Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1sub.y 𝑌 = (Poly1𝑅)
coe1sub.b 𝐵 = (Base‘𝑌)
coe1sub.p = (-g𝑌)
coe1sub.q 𝑁 = (-g𝑅)
Assertion
Ref Expression
coe1subfv (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)))

Proof of Theorem coe1subfv
StepHypRef Expression
1 simpl1 1185 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Ring)
2 coe1sub.y . . . . . . . . 9 𝑌 = (Poly1𝑅)
32ply1ring 20408 . . . . . . . 8 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
4 ringgrp 19294 . . . . . . . 8 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
53, 4syl 17 . . . . . . 7 (𝑅 ∈ Ring → 𝑌 ∈ Grp)
6 coe1sub.b . . . . . . . 8 𝐵 = (Base‘𝑌)
7 coe1sub.p . . . . . . . 8 = (-g𝑌)
86, 7grpsubcl 18171 . . . . . . 7 ((𝑌 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
95, 8syl3an1 1157 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
109adantr 483 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (𝐹 𝐺) ∈ 𝐵)
11 simpl3 1187 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐺𝐵)
12 simpr 487 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
13 eqid 2819 . . . . . 6 (+g𝑌) = (+g𝑌)
14 eqid 2819 . . . . . 6 (+g𝑅) = (+g𝑅)
152, 6, 13, 14coe1addfv 20425 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐹 𝐺) ∈ 𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)))
161, 10, 11, 12, 15syl31anc 1367 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)))
1753ad2ant1 1127 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑌 ∈ Grp)
1817adantr 483 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑌 ∈ Grp)
19 simpl2 1186 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐹𝐵)
206, 13, 7grpnpcan 18183 . . . . . . 7 ((𝑌 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺)(+g𝑌)𝐺) = 𝐹)
2118, 19, 11, 20syl3anc 1365 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((𝐹 𝐺)(+g𝑌)𝐺) = 𝐹)
2221fveq2d 6667 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1‘((𝐹 𝐺)(+g𝑌)𝐺)) = (coe1𝐹))
2322fveq1d 6665 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = ((coe1𝐹)‘𝑋))
2416, 23eqtr3d 2856 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋))
25 ringgrp 19294 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
26253ad2ant1 1127 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑅 ∈ Grp)
2726adantr 483 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Grp)
28 eqid 2819 . . . . . . 7 (coe1𝐹) = (coe1𝐹)
29 eqid 2819 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3028, 6, 2, 29coe1f 20371 . . . . . 6 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
31303ad2ant2 1128 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
3231ffvelrnda 6844 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1𝐹)‘𝑋) ∈ (Base‘𝑅))
33 eqid 2819 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
3433, 6, 2, 29coe1f 20371 . . . . . 6 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
35343ad2ant3 1129 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
3635ffvelrnda 6844 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1𝐺)‘𝑋) ∈ (Base‘𝑅))
37 eqid 2819 . . . . . . 7 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
3837, 6, 2, 29coe1f 20371 . . . . . 6 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)):ℕ0⟶(Base‘𝑅))
399, 38syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)):ℕ0⟶(Base‘𝑅))
4039ffvelrnda 6844 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) ∈ (Base‘𝑅))
41 coe1sub.q . . . . 5 𝑁 = (-g𝑅)
4229, 14, 41grpsubadd 18179 . . . 4 ((𝑅 ∈ Grp ∧ (((coe1𝐹)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1‘(𝐹 𝐺))‘𝑋) ∈ (Base‘𝑅))) → ((((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋)))
4327, 32, 36, 40, 42syl13anc 1366 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋)))
4424, 43mpbird 259 . 2 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋))
4544eqcomd 2825 1 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  wf 6344  cfv 6348  (class class class)co 7148  0cn0 11889  Basecbs 16475  +gcplusg 16557  Grpcgrp 18095  -gcsg 18097  Ringcrg 19289  Poly1cpl1 20337  coe1cco1 20338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-ofr 7402  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-ple 16577  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-subrg 19525  df-psr 20128  df-mpl 20130  df-opsr 20132  df-psr1 20340  df-ply1 20342  df-coe1 20343
This theorem is referenced by:  deg1sublt  24696  ply1remlem  24748
  Copyright terms: Public domain W3C validator