MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1subfv Structured version   Visualization version   GIF version

Theorem coe1subfv 21187
Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1sub.y 𝑌 = (Poly1𝑅)
coe1sub.b 𝐵 = (Base‘𝑌)
coe1sub.p = (-g𝑌)
coe1sub.q 𝑁 = (-g𝑅)
Assertion
Ref Expression
coe1subfv (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)))

Proof of Theorem coe1subfv
StepHypRef Expression
1 simpl1 1193 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Ring)
2 coe1sub.y . . . . . . . . 9 𝑌 = (Poly1𝑅)
32ply1ring 21169 . . . . . . . 8 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
4 ringgrp 19567 . . . . . . . 8 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
53, 4syl 17 . . . . . . 7 (𝑅 ∈ Ring → 𝑌 ∈ Grp)
6 coe1sub.b . . . . . . . 8 𝐵 = (Base‘𝑌)
7 coe1sub.p . . . . . . . 8 = (-g𝑌)
86, 7grpsubcl 18443 . . . . . . 7 ((𝑌 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
95, 8syl3an1 1165 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
109adantr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (𝐹 𝐺) ∈ 𝐵)
11 simpl3 1195 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐺𝐵)
12 simpr 488 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
13 eqid 2737 . . . . . 6 (+g𝑌) = (+g𝑌)
14 eqid 2737 . . . . . 6 (+g𝑅) = (+g𝑅)
152, 6, 13, 14coe1addfv 21186 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐹 𝐺) ∈ 𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)))
161, 10, 11, 12, 15syl31anc 1375 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)))
1753ad2ant1 1135 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑌 ∈ Grp)
1817adantr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑌 ∈ Grp)
19 simpl2 1194 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐹𝐵)
206, 13, 7grpnpcan 18455 . . . . . . 7 ((𝑌 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺)(+g𝑌)𝐺) = 𝐹)
2118, 19, 11, 20syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((𝐹 𝐺)(+g𝑌)𝐺) = 𝐹)
2221fveq2d 6721 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1‘((𝐹 𝐺)(+g𝑌)𝐺)) = (coe1𝐹))
2322fveq1d 6719 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = ((coe1𝐹)‘𝑋))
2416, 23eqtr3d 2779 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋))
25 ringgrp 19567 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
26253ad2ant1 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑅 ∈ Grp)
2726adantr 484 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Grp)
28 eqid 2737 . . . . . . 7 (coe1𝐹) = (coe1𝐹)
29 eqid 2737 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3028, 6, 2, 29coe1f 21132 . . . . . 6 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
31303ad2ant2 1136 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
3231ffvelrnda 6904 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1𝐹)‘𝑋) ∈ (Base‘𝑅))
33 eqid 2737 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
3433, 6, 2, 29coe1f 21132 . . . . . 6 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
35343ad2ant3 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
3635ffvelrnda 6904 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1𝐺)‘𝑋) ∈ (Base‘𝑅))
37 eqid 2737 . . . . . . 7 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
3837, 6, 2, 29coe1f 21132 . . . . . 6 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)):ℕ0⟶(Base‘𝑅))
399, 38syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)):ℕ0⟶(Base‘𝑅))
4039ffvelrnda 6904 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) ∈ (Base‘𝑅))
41 coe1sub.q . . . . 5 𝑁 = (-g𝑅)
4229, 14, 41grpsubadd 18451 . . . 4 ((𝑅 ∈ Grp ∧ (((coe1𝐹)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1‘(𝐹 𝐺))‘𝑋) ∈ (Base‘𝑅))) → ((((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋)))
4327, 32, 36, 40, 42syl13anc 1374 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋)))
4424, 43mpbird 260 . 2 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋))
4544eqcomd 2743 1 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wf 6376  cfv 6380  (class class class)co 7213  0cn0 12090  Basecbs 16760  +gcplusg 16802  Grpcgrp 18365  -gcsg 18367  Ringcrg 19562  Poly1cpl1 21098  coe1cco1 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-tset 16821  df-ple 16822  df-0g 16946  df-gsum 16947  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-subrg 19798  df-psr 20868  df-mpl 20870  df-opsr 20872  df-psr1 21101  df-ply1 21103  df-coe1 21104
This theorem is referenced by:  deg1sublt  25008  ply1remlem  25060
  Copyright terms: Public domain W3C validator