MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1subfv Structured version   Visualization version   GIF version

Theorem coe1subfv 22175
Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1sub.y 𝑌 = (Poly1𝑅)
coe1sub.b 𝐵 = (Base‘𝑌)
coe1sub.p = (-g𝑌)
coe1sub.q 𝑁 = (-g𝑅)
Assertion
Ref Expression
coe1subfv (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)))

Proof of Theorem coe1subfv
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Ring)
2 coe1sub.y . . . . . . . . 9 𝑌 = (Poly1𝑅)
32ply1ring 22155 . . . . . . . 8 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
4 ringgrp 20151 . . . . . . . 8 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
53, 4syl 17 . . . . . . 7 (𝑅 ∈ Ring → 𝑌 ∈ Grp)
6 coe1sub.b . . . . . . . 8 𝐵 = (Base‘𝑌)
7 coe1sub.p . . . . . . . 8 = (-g𝑌)
86, 7grpsubcl 18928 . . . . . . 7 ((𝑌 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
95, 8syl3an1 1163 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
109adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (𝐹 𝐺) ∈ 𝐵)
11 simpl3 1194 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐺𝐵)
12 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
13 eqid 2731 . . . . . 6 (+g𝑌) = (+g𝑌)
14 eqid 2731 . . . . . 6 (+g𝑅) = (+g𝑅)
152, 6, 13, 14coe1addfv 22174 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐹 𝐺) ∈ 𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)))
161, 10, 11, 12, 15syl31anc 1375 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)))
1753ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑌 ∈ Grp)
1817adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑌 ∈ Grp)
19 simpl2 1193 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐹𝐵)
206, 13, 7grpnpcan 18940 . . . . . . 7 ((𝑌 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺)(+g𝑌)𝐺) = 𝐹)
2118, 19, 11, 20syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((𝐹 𝐺)(+g𝑌)𝐺) = 𝐹)
2221fveq2d 6821 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1‘((𝐹 𝐺)(+g𝑌)𝐺)) = (coe1𝐹))
2322fveq1d 6819 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = ((coe1𝐹)‘𝑋))
2416, 23eqtr3d 2768 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋))
25 ringgrp 20151 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
26253ad2ant1 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑅 ∈ Grp)
2726adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Grp)
28 eqid 2731 . . . . . . 7 (coe1𝐹) = (coe1𝐹)
29 eqid 2731 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3028, 6, 2, 29coe1f 22119 . . . . . 6 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
31303ad2ant2 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
3231ffvelcdmda 7012 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1𝐹)‘𝑋) ∈ (Base‘𝑅))
33 eqid 2731 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
3433, 6, 2, 29coe1f 22119 . . . . . 6 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
35343ad2ant3 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
3635ffvelcdmda 7012 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1𝐺)‘𝑋) ∈ (Base‘𝑅))
37 eqid 2731 . . . . . . 7 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
3837, 6, 2, 29coe1f 22119 . . . . . 6 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)):ℕ0⟶(Base‘𝑅))
399, 38syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)):ℕ0⟶(Base‘𝑅))
4039ffvelcdmda 7012 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) ∈ (Base‘𝑅))
41 coe1sub.q . . . . 5 𝑁 = (-g𝑅)
4229, 14, 41grpsubadd 18936 . . . 4 ((𝑅 ∈ Grp ∧ (((coe1𝐹)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1‘(𝐹 𝐺))‘𝑋) ∈ (Base‘𝑅))) → ((((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋)))
4327, 32, 36, 40, 42syl13anc 1374 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋)))
4424, 43mpbird 257 . 2 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋))
4544eqcomd 2737 1 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wf 6472  cfv 6476  (class class class)co 7341  0cn0 12376  Basecbs 17115  +gcplusg 17156  Grpcgrp 18841  -gcsg 18843  Ringcrg 20146  Poly1cpl1 22084  coe1cco1 22085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-subrng 20456  df-subrg 20480  df-psr 21841  df-mpl 21843  df-opsr 21845  df-psr1 22087  df-ply1 22089  df-coe1 22090
This theorem is referenced by:  deg1sublt  26037  ply1remlem  26092  2sqr3minply  33785
  Copyright terms: Public domain W3C validator