Proof of Theorem coe1subfv
| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 2 | | coe1sub.y |
. . . . . . . . 9
⊢ 𝑌 = (Poly1‘𝑅) |
| 3 | 2 | ply1ring 22249 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑌 ∈ Ring) |
| 4 | | ringgrp 20235 |
. . . . . . . 8
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑌 ∈ Grp) |
| 6 | | coe1sub.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑌) |
| 7 | | coe1sub.p |
. . . . . . . 8
⊢ − =
(-g‘𝑌) |
| 8 | 6, 7 | grpsubcl 19038 |
. . . . . . 7
⊢ ((𝑌 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) ∈ 𝐵) |
| 9 | 5, 8 | syl3an1 1164 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) ∈ 𝐵) |
| 10 | 9 | adantr 480 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → (𝐹 − 𝐺) ∈ 𝐵) |
| 11 | | simpl3 1194 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐺 ∈ 𝐵) |
| 12 | | simpr 484 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈
ℕ0) |
| 13 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝑌) = (+g‘𝑌) |
| 14 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 15 | 2, 6, 13, 14 | coe1addfv 22268 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ (𝐹 − 𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
((coe1‘((𝐹
−
𝐺)(+g‘𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 − 𝐺))‘𝑋)(+g‘𝑅)((coe1‘𝐺)‘𝑋))) |
| 16 | 1, 10, 11, 12, 15 | syl31anc 1375 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
((coe1‘((𝐹
−
𝐺)(+g‘𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 − 𝐺))‘𝑋)(+g‘𝑅)((coe1‘𝐺)‘𝑋))) |
| 17 | 5 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝑌 ∈ Grp) |
| 18 | 17 | adantr 480 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑌 ∈ Grp) |
| 19 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐹 ∈ 𝐵) |
| 20 | 6, 13, 7 | grpnpcan 19050 |
. . . . . . 7
⊢ ((𝑌 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 − 𝐺)(+g‘𝑌)𝐺) = 𝐹) |
| 21 | 18, 19, 11, 20 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((𝐹 − 𝐺)(+g‘𝑌)𝐺) = 𝐹) |
| 22 | 21 | fveq2d 6910 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
(coe1‘((𝐹
−
𝐺)(+g‘𝑌)𝐺)) = (coe1‘𝐹)) |
| 23 | 22 | fveq1d 6908 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
((coe1‘((𝐹
−
𝐺)(+g‘𝑌)𝐺))‘𝑋) = ((coe1‘𝐹)‘𝑋)) |
| 24 | 16, 23 | eqtr3d 2779 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
(((coe1‘(𝐹
−
𝐺))‘𝑋)(+g‘𝑅)((coe1‘𝐺)‘𝑋)) = ((coe1‘𝐹)‘𝑋)) |
| 25 | | ringgrp 20235 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 26 | 25 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 27 | 26 | adantr 480 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Grp) |
| 28 | | eqid 2737 |
. . . . . . 7
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
| 29 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 30 | 28, 6, 2, 29 | coe1f 22213 |
. . . . . 6
⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
| 31 | 30 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
| 32 | 31 | ffvelcdmda 7104 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
((coe1‘𝐹)‘𝑋) ∈ (Base‘𝑅)) |
| 33 | | eqid 2737 |
. . . . . . 7
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
| 34 | 33, 6, 2, 29 | coe1f 22213 |
. . . . . 6
⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 35 | 34 | 3ad2ant3 1136 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
| 36 | 35 | ffvelcdmda 7104 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
((coe1‘𝐺)‘𝑋) ∈ (Base‘𝑅)) |
| 37 | | eqid 2737 |
. . . . . . 7
⊢
(coe1‘(𝐹 − 𝐺)) = (coe1‘(𝐹 − 𝐺)) |
| 38 | 37, 6, 2, 29 | coe1f 22213 |
. . . . . 6
⊢ ((𝐹 − 𝐺) ∈ 𝐵 → (coe1‘(𝐹 − 𝐺)):ℕ0⟶(Base‘𝑅)) |
| 39 | 9, 38 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 − 𝐺)):ℕ0⟶(Base‘𝑅)) |
| 40 | 39 | ffvelcdmda 7104 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
((coe1‘(𝐹
−
𝐺))‘𝑋) ∈ (Base‘𝑅)) |
| 41 | | coe1sub.q |
. . . . 5
⊢ 𝑁 = (-g‘𝑅) |
| 42 | 29, 14, 41 | grpsubadd 19046 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧
(((coe1‘𝐹)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1‘𝐺)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1‘(𝐹 − 𝐺))‘𝑋) ∈ (Base‘𝑅))) → ((((coe1‘𝐹)‘𝑋)𝑁((coe1‘𝐺)‘𝑋)) = ((coe1‘(𝐹 − 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 − 𝐺))‘𝑋)(+g‘𝑅)((coe1‘𝐺)‘𝑋)) = ((coe1‘𝐹)‘𝑋))) |
| 43 | 27, 32, 36, 40, 42 | syl13anc 1374 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
((((coe1‘𝐹)‘𝑋)𝑁((coe1‘𝐺)‘𝑋)) = ((coe1‘(𝐹 − 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 − 𝐺))‘𝑋)(+g‘𝑅)((coe1‘𝐺)‘𝑋)) = ((coe1‘𝐹)‘𝑋))) |
| 44 | 24, 43 | mpbird 257 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
(((coe1‘𝐹)‘𝑋)𝑁((coe1‘𝐺)‘𝑋)) = ((coe1‘(𝐹 − 𝐺))‘𝑋)) |
| 45 | 44 | eqcomd 2743 |
1
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) →
((coe1‘(𝐹
−
𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋)𝑁((coe1‘𝐺)‘𝑋))) |