MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1subfv Structured version   Visualization version   GIF version

Theorem coe1subfv 21347
Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
coe1sub.y 𝑌 = (Poly1𝑅)
coe1sub.b 𝐵 = (Base‘𝑌)
coe1sub.p = (-g𝑌)
coe1sub.q 𝑁 = (-g𝑅)
Assertion
Ref Expression
coe1subfv (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)))

Proof of Theorem coe1subfv
StepHypRef Expression
1 simpl1 1189 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Ring)
2 coe1sub.y . . . . . . . . 9 𝑌 = (Poly1𝑅)
32ply1ring 21329 . . . . . . . 8 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
4 ringgrp 19703 . . . . . . . 8 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
53, 4syl 17 . . . . . . 7 (𝑅 ∈ Ring → 𝑌 ∈ Grp)
6 coe1sub.b . . . . . . . 8 𝐵 = (Base‘𝑌)
7 coe1sub.p . . . . . . . 8 = (-g𝑌)
86, 7grpsubcl 18570 . . . . . . 7 ((𝑌 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
95, 8syl3an1 1161 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
109adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (𝐹 𝐺) ∈ 𝐵)
11 simpl3 1191 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐺𝐵)
12 simpr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
13 eqid 2738 . . . . . 6 (+g𝑌) = (+g𝑌)
14 eqid 2738 . . . . . 6 (+g𝑅) = (+g𝑅)
152, 6, 13, 14coe1addfv 21346 . . . . 5 (((𝑅 ∈ Ring ∧ (𝐹 𝐺) ∈ 𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)))
161, 10, 11, 12, 15syl31anc 1371 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)))
1753ad2ant1 1131 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑌 ∈ Grp)
1817adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑌 ∈ Grp)
19 simpl2 1190 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝐹𝐵)
206, 13, 7grpnpcan 18582 . . . . . . 7 ((𝑌 ∈ Grp ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺)(+g𝑌)𝐺) = 𝐹)
2118, 19, 11, 20syl3anc 1369 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((𝐹 𝐺)(+g𝑌)𝐺) = 𝐹)
2221fveq2d 6760 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (coe1‘((𝐹 𝐺)(+g𝑌)𝐺)) = (coe1𝐹))
2322fveq1d 6758 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((𝐹 𝐺)(+g𝑌)𝐺))‘𝑋) = ((coe1𝐹)‘𝑋))
2416, 23eqtr3d 2780 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋))
25 ringgrp 19703 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
26253ad2ant1 1131 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑅 ∈ Grp)
2726adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → 𝑅 ∈ Grp)
28 eqid 2738 . . . . . . 7 (coe1𝐹) = (coe1𝐹)
29 eqid 2738 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
3028, 6, 2, 29coe1f 21292 . . . . . 6 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
31303ad2ant2 1132 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
3231ffvelrnda 6943 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1𝐹)‘𝑋) ∈ (Base‘𝑅))
33 eqid 2738 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
3433, 6, 2, 29coe1f 21292 . . . . . 6 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
35343ad2ant3 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
3635ffvelrnda 6943 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1𝐺)‘𝑋) ∈ (Base‘𝑅))
37 eqid 2738 . . . . . . 7 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
3837, 6, 2, 29coe1f 21292 . . . . . 6 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)):ℕ0⟶(Base‘𝑅))
399, 38syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)):ℕ0⟶(Base‘𝑅))
4039ffvelrnda 6943 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) ∈ (Base‘𝑅))
41 coe1sub.q . . . . 5 𝑁 = (-g𝑅)
4229, 14, 41grpsubadd 18578 . . . 4 ((𝑅 ∈ Grp ∧ (((coe1𝐹)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘𝑋) ∈ (Base‘𝑅) ∧ ((coe1‘(𝐹 𝐺))‘𝑋) ∈ (Base‘𝑅))) → ((((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋)))
4327, 32, 36, 40, 42syl13anc 1370 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋) ↔ (((coe1‘(𝐹 𝐺))‘𝑋)(+g𝑅)((coe1𝐺)‘𝑋)) = ((coe1𝐹)‘𝑋)))
4424, 43mpbird 256 . 2 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)) = ((coe1‘(𝐹 𝐺))‘𝑋))
4544eqcomd 2744 1 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 𝐺))‘𝑋) = (((coe1𝐹)‘𝑋)𝑁((coe1𝐺)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wf 6414  cfv 6418  (class class class)co 7255  0cn0 12163  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  -gcsg 18494  Ringcrg 19698  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-psr 21022  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  deg1sublt  25180  ply1remlem  25232
  Copyright terms: Public domain W3C validator