HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ho02i Structured version   Visualization version   GIF version

Theorem ho02i 29387
Description: A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S10) of [Beran] p. 95. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
ho0.1 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
ho02i (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = 0 ↔ 𝑇 = 0hop )
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem ho02i
StepHypRef Expression
1 ralcom 3295 . 2 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = 0 ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = 0)
2 ho0.1 . . . . 5 𝑇: ℋ⟶ ℋ
32ffvelrni 6675 . . . 4 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
4 hial02 28659 . . . . 5 ((𝑇𝑦) ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = 0 ↔ (𝑇𝑦) = 0))
5 hial0 28658 . . . . 5 ((𝑇𝑦) ∈ ℋ → (∀𝑥 ∈ ℋ ((𝑇𝑦) ·ih 𝑥) = 0 ↔ (𝑇𝑦) = 0))
64, 5bitr4d 274 . . . 4 ((𝑇𝑦) ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = 0 ↔ ∀𝑥 ∈ ℋ ((𝑇𝑦) ·ih 𝑥) = 0))
73, 6syl 17 . . 3 (𝑦 ∈ ℋ → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = 0 ↔ ∀𝑥 ∈ ℋ ((𝑇𝑦) ·ih 𝑥) = 0))
87ralbiia 3114 . 2 (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = 0 ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇𝑦) ·ih 𝑥) = 0)
92ho01i 29386 . 2 (∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇𝑦) ·ih 𝑥) = 0 ↔ 𝑇 = 0hop )
101, 8, 93bitri 289 1 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = 0 ↔ 𝑇 = 0hop )
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1507  wcel 2050  wral 3088  wf 6184  cfv 6188  (class class class)co 6976  0cc0 10335  chba 28475   ·ih csp 28478  0c0v 28480   0hop ch0o 28499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cc 9655  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415  ax-hilex 28555  ax-hfvadd 28556  ax-hvcom 28557  ax-hvass 28558  ax-hv0cl 28559  ax-hvaddid 28560  ax-hfvmul 28561  ax-hvmulid 28562  ax-hvmulass 28563  ax-hvdistr1 28564  ax-hvdistr2 28565  ax-hvmul0 28566  ax-hfi 28635  ax-his1 28638  ax-his2 28639  ax-his3 28640  ax-his4 28641  ax-hcompl 28758
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-omul 7910  df-er 8089  df-map 8208  df-pm 8209  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-fi 8670  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-acn 9165  df-cda 9388  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-rlim 14707  df-sum 14904  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-hom 16445  df-cco 16446  df-rest 16552  df-topn 16553  df-0g 16571  df-gsum 16572  df-topgen 16573  df-pt 16574  df-prds 16577  df-xrs 16631  df-qtop 16636  df-imas 16637  df-xps 16639  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-submnd 17804  df-mulg 18012  df-cntz 18218  df-cmn 18668  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-fbas 20244  df-fg 20245  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cld 21331  df-ntr 21332  df-cls 21333  df-nei 21410  df-cn 21539  df-cnp 21540  df-lm 21541  df-haus 21627  df-tx 21874  df-hmeo 22067  df-fil 22158  df-fm 22250  df-flim 22251  df-flf 22252  df-xms 22633  df-ms 22634  df-tms 22635  df-cfil 23561  df-cau 23562  df-cmet 23563  df-grpo 28047  df-gid 28048  df-ginv 28049  df-gdiv 28050  df-ablo 28099  df-vc 28113  df-nv 28146  df-va 28149  df-ba 28150  df-sm 28151  df-0v 28152  df-vs 28153  df-nmcv 28154  df-ims 28155  df-dip 28255  df-ssp 28276  df-ph 28367  df-cbn 28418  df-hnorm 28524  df-hba 28525  df-hvsub 28527  df-hlim 28528  df-hcau 28529  df-sh 28763  df-ch 28777  df-oc 28808  df-ch0 28809  df-shs 28866  df-pjh 28953  df-h0op 29306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator