| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihglblem5aN | Structured version Visualization version GIF version | ||
| Description: A conjunction property of isomorphism H. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihglblem5a.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihglblem5a.m | ⊢ ∧ = (meet‘𝐾) |
| dihglblem5a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihglblem5a.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dihglblem5aN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑋 ∧ 𝑊)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → 𝑋(le‘𝐾)𝑊) | |
| 2 | hllat 39310 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 3 | 2 | ad3antrrr 730 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → 𝐾 ∈ Lat) |
| 4 | simplr 768 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → 𝑋 ∈ 𝐵) | |
| 5 | dihglblem5a.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | dihglblem5a.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | 5, 6 | lhpbase 39946 | . . . . . . 7 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 8 | 7 | ad3antlr 731 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → 𝑊 ∈ 𝐵) |
| 9 | eqid 2734 | . . . . . . 7 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 10 | dihglblem5a.m | . . . . . . 7 ⊢ ∧ = (meet‘𝐾) | |
| 11 | 5, 9, 10 | latleeqm1 18464 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 ∧ 𝑊) = 𝑋)) |
| 12 | 3, 4, 8, 11 | syl3anc 1372 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋(le‘𝐾)𝑊 ↔ (𝑋 ∧ 𝑊) = 𝑋)) |
| 13 | 1, 12 | mpbid 232 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝑋 ∧ 𝑊) = 𝑋) |
| 14 | 13 | fveq2d 6877 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝐼‘(𝑋 ∧ 𝑊)) = (𝐼‘𝑋)) |
| 15 | simpll 766 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 16 | dihglblem5a.i | . . . . . . 7 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 17 | 5, 9, 6, 16 | dihord 41212 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑊) ↔ 𝑋(le‘𝐾)𝑊)) |
| 18 | 15, 4, 8, 17 | syl3anc 1372 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑊) ↔ 𝑋(le‘𝐾)𝑊)) |
| 19 | 1, 18 | mpbird 257 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝐼‘𝑋) ⊆ (𝐼‘𝑊)) |
| 20 | dfss2 3942 | . . . 4 ⊢ ((𝐼‘𝑋) ⊆ (𝐼‘𝑊) ↔ ((𝐼‘𝑋) ∩ (𝐼‘𝑊)) = (𝐼‘𝑋)) | |
| 21 | 19, 20 | sylib 218 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → ((𝐼‘𝑋) ∩ (𝐼‘𝑊)) = (𝐼‘𝑋)) |
| 22 | 14, 21 | eqtr4d 2772 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ 𝑋(le‘𝐾)𝑊) → (𝐼‘(𝑋 ∧ 𝑊)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑊))) |
| 23 | eqid 2734 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 24 | eqid 2734 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 25 | eqid 2734 | . . . 4 ⊢ ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) | |
| 26 | eqid 2734 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 27 | eqid 2734 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 28 | eqid 2734 | . . . 4 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 29 | eqid 2734 | . . . 4 ⊢ (℩ℎ ∈ ((LTrn‘𝐾)‘𝑊)(ℎ‘((oc‘𝐾)‘𝑊)) = 𝑞) = (℩ℎ ∈ ((LTrn‘𝐾)‘𝑊)(ℎ‘((oc‘𝐾)‘𝑊)) = 𝑞) | |
| 30 | eqid 2734 | . . . 4 ⊢ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) | |
| 31 | 5, 10, 6, 16, 9, 23, 24, 25, 26, 27, 28, 29, 30 | dihglblem5apreN 41239 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋(le‘𝐾)𝑊)) → (𝐼‘(𝑋 ∧ 𝑊)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑊))) |
| 32 | 31 | anassrs 467 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑋(le‘𝐾)𝑊) → (𝐼‘(𝑋 ∧ 𝑊)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑊))) |
| 33 | 22, 32 | pm2.61dan 812 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑋 ∧ 𝑊)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3923 ⊆ wss 3924 class class class wbr 5117 ↦ cmpt 5199 I cid 5545 ↾ cres 5654 ‘cfv 6528 ℩crio 7356 (class class class)co 7400 Basecbs 17215 lecple 17265 occoc 17266 joincjn 18310 meetcmee 18311 Latclat 18428 Atomscatm 39210 HLchlt 39297 LHypclh 39932 LTrncltrn 40049 trLctrl 40106 TEndoctendo 40700 DIsoHcdih 41176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-riotaBAD 38900 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-tpos 8220 df-undef 8267 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-n0 12495 df-z 12582 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-0g 17442 df-proset 18293 df-poset 18312 df-plt 18327 df-lub 18343 df-glb 18344 df-join 18345 df-meet 18346 df-p0 18422 df-p1 18423 df-lat 18429 df-clat 18496 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-subg 19093 df-cntz 19287 df-lsm 19604 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-ring 20182 df-oppr 20284 df-dvdsr 20304 df-unit 20305 df-invr 20335 df-dvr 20348 df-drng 20678 df-lmod 20806 df-lss 20876 df-lsp 20916 df-lvec 21048 df-oposet 39123 df-ol 39125 df-oml 39126 df-covers 39213 df-ats 39214 df-atl 39245 df-cvlat 39269 df-hlat 39298 df-llines 39446 df-lplanes 39447 df-lvols 39448 df-lines 39449 df-psubsp 39451 df-pmap 39452 df-padd 39744 df-lhyp 39936 df-laut 39937 df-ldil 40052 df-ltrn 40053 df-trl 40107 df-tendo 40703 df-edring 40705 df-disoa 40977 df-dvech 41027 df-dib 41087 df-dic 41121 df-dih 41177 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |