![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmcl | Structured version Visualization version GIF version |
Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
lcmcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmcom 16526 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀)) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀)) |
3 | oveq2 7413 | . . . . . . 7 ⊢ (𝑀 = 0 → (𝑁 lcm 𝑀) = (𝑁 lcm 0)) | |
4 | lcm0val 16527 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0) | |
5 | 3, 4 | sylan9eqr 2794 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑁 lcm 𝑀) = 0) |
6 | 5 | adantll 712 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑁 lcm 𝑀) = 0) |
7 | 2, 6 | eqtrd 2772 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0) |
8 | oveq2 7413 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0)) | |
9 | lcm0val 16527 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | |
10 | 8, 9 | sylan9eqr 2794 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0) |
11 | 10 | adantlr 713 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0) |
12 | 7, 11 | jaodan 956 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = 0) |
13 | 0nn0 12483 | . . 3 ⊢ 0 ∈ ℕ0 | |
14 | 12, 13 | eqeltrdi 2841 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ0) |
15 | lcmn0cl 16530 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ) | |
16 | 15 | nnnn0d 12528 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ0) |
17 | 14, 16 | pm2.61dan 811 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 (class class class)co 7405 0cc0 11106 ℕ0cn0 12468 ℤcz 12554 lcm clcm 16521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16194 df-lcm 16523 |
This theorem is referenced by: gcddvdslcm 16535 lcmneg 16536 lcmdvds 16541 lcmid 16542 lcm1 16543 lcmgcdeq 16545 lcmdvdsb 16546 lcmass 16547 3lcm2e6woprm 16548 6lcm4e12 16549 lcmftp 16569 lcmfunsnlem2lem2 16572 3lcm2e6 16664 ex-lcm 29700 lcmeprodgcdi 40860 nzin 43062 nzprmdif 43063 |
Copyright terms: Public domain | W3C validator |