MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqz2 Structured version   Visualization version   GIF version

Theorem rlimsqz2 15006
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 3-Feb-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqz.d (𝜑𝐷 ∈ ℝ)
rlimsqz.m (𝜑𝑀 ∈ ℝ)
rlimsqz.l (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimsqz.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
rlimsqz.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
rlimsqz2.1 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
rlimsqz2.2 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷𝐶)
Assertion
Ref Expression
rlimsqz2 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem rlimsqz2
StepHypRef Expression
1 rlimsqz.m . 2 (𝜑𝑀 ∈ ℝ)
2 rlimsqz.d . . 3 (𝜑𝐷 ∈ ℝ)
32recnd 10668 . 2 (𝜑𝐷 ∈ ℂ)
4 rlimsqz.l . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
5 rlimsqz.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
65recnd 10668 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
7 rlimsqz.c . . 3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
87recnd 10668 . 2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
97adantrr 715 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶 ∈ ℝ)
105adantrr 715 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐵 ∈ ℝ)
112adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷 ∈ ℝ)
12 rlimsqz2.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐶𝐵)
139, 10, 11, 12lesub1dd 11255 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (𝐶𝐷) ≤ (𝐵𝐷))
14 rlimsqz2.2 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷𝐶)
1511, 9, 14abssubge0d 14790 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐷)) = (𝐶𝐷))
1611, 9, 10, 14, 12letrd 10796 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → 𝐷𝐵)
1711, 10, 16abssubge0d 14790 . . 3 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐵𝐷)) = (𝐵𝐷))
1813, 15, 173brtr4d 5097 . 2 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐷)) ≤ (abs‘(𝐵𝐷)))
191, 3, 4, 6, 8, 18rlimsqzlem 15004 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110   class class class wbr 5065  cmpt 5145  cfv 6354  (class class class)co 7155  cr 10535  cle 10675  cmin 10869  abscabs 14592  𝑟 crli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-ico 12743  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-rlim 14845
This theorem is referenced by:  cxp2limlem  25552  cxp2lim  25553  chpchtlim  26054  selberg2lem  26125
  Copyright terms: Public domain W3C validator