MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem1 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem1 26305
Description: The sum of selberg3r 26297 and selberg4r 26298. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrlog2bndlem1 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1)
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥   𝑆,𝑛,𝑥   𝑅,𝑛,𝑥
Allowed substitution hints:   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)

Proof of Theorem pntrlog2bndlem1
Dummy variables 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10713 . . 3 (⊤ → 1 ∈ ℝ)
2 pntrlog2bnd.r . . . . 5 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
32selberg34r 26299 . . . 4 (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
4 elioore 12844 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
54adantl 485 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
6 1rp 12469 . . . . . . . . . . . 12 1 ∈ ℝ+
76a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
8 1red 10713 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
9 eliooord 12873 . . . . . . . . . . . . . 14 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
109adantl 485 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
1110simpld 498 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
128, 5, 11ltled 10859 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
135, 7, 12rpgecld 12546 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
142pntrf 26291 . . . . . . . . . . 11 𝑅:ℝ+⟶ℝ
1514ffvelrni 6854 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1613, 15syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1713relogcld 25358 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1816, 17remulcld 10742 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑅𝑥) · (log‘𝑥)) ∈ ℝ)
19 fzfid 13425 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2013adantr 484 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
21 elfznn 13020 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2221adantl 485 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2322nnrpd 12505 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
2420, 23rpdivcld 12524 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2514ffvelrni 6854 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
2624, 25syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
27 fzfid 13425 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...𝑛) ∈ Fin)
28 dvdsssfz1 15756 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
2922, 28syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
3027, 29ssfid 8812 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
31 ssrab2 3967 . . . . . . . . . . . . . . . 16 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
32 simpr 488 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
3331, 32sseldi 3873 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ ℕ)
34 vmacl 25847 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
3533, 34syl 17 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑚) ∈ ℝ)
36 dvdsdivcl 15754 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
3722, 36sylan 583 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
3831, 37sseldi 3873 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ ℕ)
39 vmacl 25847 . . . . . . . . . . . . . . 15 ((𝑛 / 𝑚) ∈ ℕ → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
4038, 39syl 17 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
4135, 40remulcld 10742 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
4230, 41fsumrecl 15177 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
43 vmacl 25847 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
4422, 43syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
4523relogcld 25358 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
4644, 45remulcld 10742 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℝ)
4742, 46resubcld 11139 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))) ∈ ℝ)
4826, 47remulcld 10742 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℝ)
4919, 48fsumrecl 15177 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℝ)
505, 11rplogcld 25364 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
5149, 50rerpdivcld 12538 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈ ℝ)
5218, 51resubcld 11139 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) ∈ ℝ)
5352, 13rerpdivcld 12538 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥) ∈ ℝ)
5453recnd 10740 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥) ∈ ℂ)
5554lo1o12 14973 . . . 4 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥))) ∈ ≤𝑂(1)))
563, 55mpbii 236 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥))) ∈ ≤𝑂(1))
5754abscld 14879 . . 3 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ ℝ)
5816recnd 10740 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
5958abscld 14879 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
6059, 17remulcld 10742 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
6126recnd 10740 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
6261abscld 14879 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
6322nnred 11724 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
64 pntsval.1 . . . . . . . . . . . 12 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
6564pntsf 26301 . . . . . . . . . . 11 𝑆:ℝ⟶ℝ
6665ffvelrni 6854 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝑆𝑛) ∈ ℝ)
6763, 66syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℝ)
68 1red 10713 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
6963, 68resubcld 11139 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
7065ffvelrni 6854 . . . . . . . . . 10 ((𝑛 − 1) ∈ ℝ → (𝑆‘(𝑛 − 1)) ∈ ℝ)
7169, 70syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℝ)
7267, 71resubcld 11139 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) ∈ ℝ)
7362, 72remulcld 10742 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
7419, 73fsumrecl 15177 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
7574, 50rerpdivcld 12538 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) ∈ ℝ)
7660, 75resubcld 11139 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ∈ ℝ)
7776, 13rerpdivcld 12538 . . 3 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ∈ ℝ)
7817recnd 10740 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
7958, 78mulcld 10732 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑅𝑥) · (log‘𝑥)) ∈ ℂ)
8049recnd 10740 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℂ)
8150rpne0d 12512 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
8280, 78, 81divcld 11487 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈ ℂ)
8379, 82subcld 11068 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) ∈ ℂ)
8483abscld 14879 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) ∈ ℝ)
8580abscld 14879 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈ ℝ)
8685, 50rerpdivcld 12538 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥)) ∈ ℝ)
8760, 86resubcld 11139 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥))) ∈ ℝ)
8848recnd 10740 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℂ)
8988abscld 14879 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈ ℝ)
9019, 89fsumrecl 15177 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈ ℝ)
9119, 88fsumabs 15242 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))))
9247recnd 10740 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))) ∈ ℂ)
9361, 92absmuld 14897 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))))
9492abscld 14879 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℝ)
9561absge0d 14887 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
9642recnd 10740 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
9746recnd 10740 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
9896, 97abs2dif2d 14901 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ≤ ((abs‘Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) + (abs‘((Λ‘𝑛) · (log‘𝑛)))))
9971recnd 10740 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℂ)
10096, 97addcld 10731 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛))) ∈ ℂ)
10199, 100pncan2d 11070 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆‘(𝑛 − 1)) + (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛)))) − (𝑆‘(𝑛 − 1))) = (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛))))
102 elfzuz 12987 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ (ℤ‘1))
103102adantl 485 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ (ℤ‘1))
104 elfznn 13020 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
105104adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
106 vmacl 25847 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (Λ‘𝑘) ∈ ℝ)
108105nnrpd 12505 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℝ+)
109108relogcld 25358 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (log‘𝑘) ∈ ℝ)
110107, 109remulcld 10742 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → ((Λ‘𝑘) · (log‘𝑘)) ∈ ℝ)
111 fzfid 13425 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (1...𝑘) ∈ Fin)
112 dvdsssfz1 15756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ (1...𝑘))
113105, 112syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ (1...𝑘))
114111, 113ssfid 8812 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ∈ Fin)
115 ssrab2 3967 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
116 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
117115, 116sseldi 3873 . . . . . . . . . . . . . . . . . . . . . . 23 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → 𝑚 ∈ ℕ)
118117, 34syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (Λ‘𝑚) ∈ ℝ)
119 dvdsdivcl 15754 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (𝑘 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
120105, 119sylan 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (𝑘 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
121115, 120sseldi 3873 . . . . . . . . . . . . . . . . . . . . . . 23 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (𝑘 / 𝑚) ∈ ℕ)
122 vmacl 25847 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 / 𝑚) ∈ ℕ → (Λ‘(𝑘 / 𝑚)) ∈ ℝ)
123121, 122syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (Λ‘(𝑘 / 𝑚)) ∈ ℝ)
124118, 123remulcld 10742 . . . . . . . . . . . . . . . . . . . . 21 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) ∈ ℝ)
125114, 124fsumrecl 15177 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) ∈ ℝ)
126110, 125readdcld 10741 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) ∈ ℝ)
127126recnd 10740 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) ∈ ℂ)
128 fveq2 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (Λ‘𝑘) = (Λ‘𝑛))
129 fveq2 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (log‘𝑘) = (log‘𝑛))
130128, 129oveq12d 7182 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑛) · (log‘𝑛)))
131 breq2 5031 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑛 → (𝑦𝑘𝑦𝑛))
132131rabbidv 3380 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → {𝑦 ∈ ℕ ∣ 𝑦𝑘} = {𝑦 ∈ ℕ ∣ 𝑦𝑛})
133 fvoveq1 7187 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑛 → (Λ‘(𝑘 / 𝑚)) = (Λ‘(𝑛 / 𝑚)))
134133oveq2d 7180 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑛 → ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) = ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
135134adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 = 𝑛𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) = ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
136132, 135sumeq12rdv 15150 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) = Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
137130, 136oveq12d 7182 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) = (((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
138103, 127, 137fsumm1 15192 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...𝑛)(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) = (Σ𝑘 ∈ (1...(𝑛 − 1))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) + (((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))))
13964pntsval2 26304 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ → (𝑆𝑛) = Σ𝑘 ∈ (1...(⌊‘𝑛))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
14063, 139syl 17 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) = Σ𝑘 ∈ (1...(⌊‘𝑛))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
14122nnzd 12160 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
142 flid 13262 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℤ → (⌊‘𝑛) = 𝑛)
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑛) = 𝑛)
144143oveq2d 7180 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘𝑛)) = (1...𝑛))
145144sumeq1d 15144 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘𝑛))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) = Σ𝑘 ∈ (1...𝑛)(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
146140, 145eqtrd 2773 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) = Σ𝑘 ∈ (1...𝑛)(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
14764pntsval2 26304 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 − 1) ∈ ℝ → (𝑆‘(𝑛 − 1)) = Σ𝑘 ∈ (1...(⌊‘(𝑛 − 1)))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
14869, 147syl 17 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) = Σ𝑘 ∈ (1...(⌊‘(𝑛 − 1)))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
149 1zzd 12087 . . . . . . . . . . . . . . . . . . . . . . 23 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℤ)
150141, 149zsubcld 12166 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℤ)
151 flid 13262 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 − 1) ∈ ℤ → (⌊‘(𝑛 − 1)) = (𝑛 − 1))
152150, 151syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑛 − 1)) = (𝑛 − 1))
153152oveq2d 7180 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑛 − 1))) = (1...(𝑛 − 1)))
154153sumeq1d 15144 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘(𝑛 − 1)))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) = Σ𝑘 ∈ (1...(𝑛 − 1))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
155148, 154eqtrd 2773 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) = Σ𝑘 ∈ (1...(𝑛 − 1))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
15696, 97addcomd 10913 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛))) = (((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
157155, 156oveq12d 7182 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆‘(𝑛 − 1)) + (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛)))) = (Σ𝑘 ∈ (1...(𝑛 − 1))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) + (((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))))
158138, 146, 1573eqtr4d 2783 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) = ((𝑆‘(𝑛 − 1)) + (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛)))))
159158oveq1d 7179 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) = (((𝑆‘(𝑛 − 1)) + (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛)))) − (𝑆‘(𝑛 − 1))))
160 vmage0 25850 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 ≤ (Λ‘𝑚))
16133, 160syl 17 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 0 ≤ (Λ‘𝑚))
162 vmage0 25850 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 / 𝑚) ∈ ℕ → 0 ≤ (Λ‘(𝑛 / 𝑚)))
16338, 162syl 17 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 0 ≤ (Λ‘(𝑛 / 𝑚)))
16435, 40, 161, 163mulge0d 11288 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 0 ≤ ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
16530, 41, 164fsumge0 15236 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
16642, 165absidd 14865 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
167 vmage0 25850 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
16822, 167syl 17 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
16922nnge1d 11757 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
17063, 169logge0d 25365 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑛))
17144, 45, 168, 170mulge0d 11288 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) · (log‘𝑛)))
17246, 171absidd 14865 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (log‘𝑛))) = ((Λ‘𝑛) · (log‘𝑛)))
173166, 172oveq12d 7182 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) + (abs‘((Λ‘𝑛) · (log‘𝑛)))) = (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛))))
174101, 159, 1733eqtr4d 2783 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) = ((abs‘Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) + (abs‘((Λ‘𝑛) · (log‘𝑛)))))
17598, 174breqtrrd 5055 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ≤ ((𝑆𝑛) − (𝑆‘(𝑛 − 1))))
17694, 72, 62, 95, 175lemul2ad 11651 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))))
17793, 176eqbrtrd 5049 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))))
17819, 89, 73, 177fsumle 15240 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))))
17985, 90, 74, 91, 178letrd 10868 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))))
18085, 74, 50, 179lediv1dd 12565 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)))
18186, 75, 60, 180lesub2dd 11328 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ≤ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥))))
18258, 78absmuld 14897 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((𝑅𝑥) · (log‘𝑥))) = ((abs‘(𝑅𝑥)) · (abs‘(log‘𝑥))))
1835, 12logge0d 25365 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (log‘𝑥))
18417, 183absidd 14865 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(log‘𝑥)) = (log‘𝑥))
185184oveq2d 7180 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (abs‘(log‘𝑥))) = ((abs‘(𝑅𝑥)) · (log‘𝑥)))
186182, 185eqtrd 2773 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((𝑅𝑥) · (log‘𝑥))) = ((abs‘(𝑅𝑥)) · (log‘𝑥)))
18780, 78, 81absdivd 14898 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (abs‘(log‘𝑥))))
188184oveq2d 7180 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (abs‘(log‘𝑥))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥)))
189187, 188eqtrd 2773 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥)))
190186, 189oveq12d 7182 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘((𝑅𝑥) · (log‘𝑥))) − (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥))))
19179, 82abs2difd 14900 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘((𝑅𝑥) · (log‘𝑥))) − (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) ≤ (abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))))
192190, 191eqbrtrrd 5051 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥))) ≤ (abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))))
19376, 87, 84, 181, 192letrd 10868 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ≤ (abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))))
19476, 84, 13, 193lediv1dd 12565 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ≤ ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / 𝑥))
19552recnd 10740 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) ∈ ℂ)
1965recnd 10740 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
19713rpne0d 12512 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
198195, 196, 197absdivd 14898 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) = ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / (abs‘𝑥)))
19913rpge0d 12511 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
2005, 199absidd 14865 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘𝑥) = 𝑥)
201200oveq2d 7180 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / (abs‘𝑥)) = ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / 𝑥))
202198, 201eqtrd 2773 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) = ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / 𝑥))
203194, 202breqtrrd 5055 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ≤ (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)))
204203adantrr 717 . . 3 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ≤ (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)))
2051, 56, 57, 77, 204lo1le 15094 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1))
206205mptru 1549 1 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wtru 1543  wcel 2113  {crab 3057  wss 3841   class class class wbr 5027  cmpt 5107  cfv 6333  (class class class)co 7164  cr 10607  0cc0 10608  1c1 10609   + caddc 10611   · cmul 10613  +∞cpnf 10743   < clt 10746  cle 10747  cmin 10941   / cdiv 11368  cn 11709  cz 12055  cuz 12317  +crp 12465  (,)cioo 12814  ...cfz 12974  cfl 13244  abscabs 14676  𝑂(1)co1 14926  ≤𝑂(1)clo1 14927  Σcsu 15128  cdvds 15692  logclog 25290  Λcvma 25821  ψcchp 25822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686  ax-addf 10687  ax-mulf 10688
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-disj 4993  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-om 7594  df-1st 7707  df-2nd 7708  df-supp 7850  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-oadd 8128  df-er 8313  df-map 8432  df-pm 8433  df-ixp 8501  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fsupp 8900  df-fi 8941  df-sup 8972  df-inf 8973  df-oi 9040  df-dju 9396  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-xnn0 12042  df-z 12056  df-dec 12173  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-ioo 12818  df-ioc 12819  df-ico 12820  df-icc 12821  df-fz 12975  df-fzo 13118  df-fl 13246  df-mod 13322  df-seq 13454  df-exp 13515  df-fac 13719  df-bc 13748  df-hash 13776  df-shft 14509  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-limsup 14911  df-clim 14928  df-rlim 14929  df-o1 14930  df-lo1 14931  df-sum 15129  df-ef 15506  df-e 15507  df-sin 15508  df-cos 15509  df-tan 15510  df-pi 15511  df-dvds 15693  df-gcd 15931  df-prm 16106  df-pc 16267  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-starv 16676  df-sca 16677  df-vsca 16678  df-ip 16679  df-tset 16680  df-ple 16681  df-ds 16683  df-unif 16684  df-hom 16685  df-cco 16686  df-rest 16792  df-topn 16793  df-0g 16811  df-gsum 16812  df-topgen 16813  df-pt 16814  df-prds 16817  df-xrs 16871  df-qtop 16876  df-imas 16877  df-xps 16879  df-mre 16953  df-mrc 16954  df-acs 16956  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-mulg 18336  df-cntz 18558  df-cmn 19019  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-fbas 20207  df-fg 20208  df-cnfld 20211  df-top 21638  df-topon 21655  df-topsp 21677  df-bases 21690  df-cld 21763  df-ntr 21764  df-cls 21765  df-nei 21842  df-lp 21880  df-perf 21881  df-cn 21971  df-cnp 21972  df-haus 22059  df-cmp 22131  df-tx 22306  df-hmeo 22499  df-fil 22590  df-fm 22682  df-flim 22683  df-flf 22684  df-xms 23066  df-ms 23067  df-tms 23068  df-cncf 23623  df-limc 24610  df-dv 24611  df-ulm 25116  df-log 25292  df-cxp 25293  df-atan 25597  df-em 25722  df-cht 25826  df-vma 25827  df-chp 25828  df-ppi 25829  df-mu 25830
This theorem is referenced by:  pntrlog2bndlem4  26308
  Copyright terms: Public domain W3C validator