MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem1 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem1 27486
Description: The sum of selberg3r 27478 and selberg4r 27479. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrlog2bndlem1 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1)
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥   𝑆,𝑛,𝑥   𝑅,𝑛,𝑥
Allowed substitution hints:   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)

Proof of Theorem pntrlog2bndlem1
Dummy variables 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 11116 . . 3 (⊤ → 1 ∈ ℝ)
2 pntrlog2bnd.r . . . . 5 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
32selberg34r 27480 . . . 4 (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
4 elioore 13278 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
54adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
6 1rp 12897 . . . . . . . . . . . 12 1 ∈ ℝ+
76a1i 11 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
8 1red 11116 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
9 eliooord 13308 . . . . . . . . . . . . . 14 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
109adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
1110simpld 494 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
128, 5, 11ltled 11264 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
135, 7, 12rpgecld 12976 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
142pntrf 27472 . . . . . . . . . . 11 𝑅:ℝ+⟶ℝ
1514ffvelcdmi 7017 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1613, 15syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1713relogcld 26530 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1816, 17remulcld 11145 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑅𝑥) · (log‘𝑥)) ∈ ℝ)
19 fzfid 13880 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2013adantr 480 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
21 elfznn 13456 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2221adantl 481 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2322nnrpd 12935 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
2420, 23rpdivcld 12954 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2514ffvelcdmi 7017 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
2624, 25syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
27 fzfid 13880 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...𝑛) ∈ Fin)
28 dvdsssfz1 16229 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
2922, 28syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
3027, 29ssfid 9158 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
31 ssrab2 4031 . . . . . . . . . . . . . . . 16 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
32 simpr 484 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
3331, 32sselid 3933 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ ℕ)
34 vmacl 27026 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
3533, 34syl 17 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑚) ∈ ℝ)
36 dvdsdivcl 16227 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
3722, 36sylan 580 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
3831, 37sselid 3933 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ ℕ)
39 vmacl 27026 . . . . . . . . . . . . . . 15 ((𝑛 / 𝑚) ∈ ℕ → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
4038, 39syl 17 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
4135, 40remulcld 11145 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
4230, 41fsumrecl 15641 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
43 vmacl 27026 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
4422, 43syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
4523relogcld 26530 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
4644, 45remulcld 11145 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℝ)
4742, 46resubcld 11548 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))) ∈ ℝ)
4826, 47remulcld 11145 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℝ)
4919, 48fsumrecl 15641 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℝ)
505, 11rplogcld 26536 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
5149, 50rerpdivcld 12968 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈ ℝ)
5218, 51resubcld 11548 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) ∈ ℝ)
5352, 13rerpdivcld 12968 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥) ∈ ℝ)
5453recnd 11143 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥) ∈ ℂ)
5554lo1o12 15440 . . . 4 (⊤ → ((𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥))) ∈ ≤𝑂(1)))
563, 55mpbii 233 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥))) ∈ ≤𝑂(1))
5754abscld 15346 . . 3 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ ℝ)
5816recnd 11143 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
5958abscld 15346 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
6059, 17remulcld 11145 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
6126recnd 11143 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
6261abscld 15346 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
6322nnred 12143 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
64 pntsval.1 . . . . . . . . . . . 12 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
6564pntsf 27482 . . . . . . . . . . 11 𝑆:ℝ⟶ℝ
6665ffvelcdmi 7017 . . . . . . . . . 10 (𝑛 ∈ ℝ → (𝑆𝑛) ∈ ℝ)
6763, 66syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℝ)
68 1red 11116 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
6963, 68resubcld 11548 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
7065ffvelcdmi 7017 . . . . . . . . . 10 ((𝑛 − 1) ∈ ℝ → (𝑆‘(𝑛 − 1)) ∈ ℝ)
7169, 70syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℝ)
7267, 71resubcld 11548 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) ∈ ℝ)
7362, 72remulcld 11145 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
7419, 73fsumrecl 15641 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) ∈ ℝ)
7574, 50rerpdivcld 12968 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)) ∈ ℝ)
7660, 75resubcld 11548 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ∈ ℝ)
7776, 13rerpdivcld 12968 . . 3 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ∈ ℝ)
7817recnd 11143 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
7958, 78mulcld 11135 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑅𝑥) · (log‘𝑥)) ∈ ℂ)
8049recnd 11143 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℂ)
8150rpne0d 12942 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
8280, 78, 81divcld 11900 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈ ℂ)
8379, 82subcld 11475 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) ∈ ℂ)
8483abscld 15346 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) ∈ ℝ)
8580abscld 15346 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈ ℝ)
8685, 50rerpdivcld 12968 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥)) ∈ ℝ)
8760, 86resubcld 11548 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥))) ∈ ℝ)
8848recnd 11143 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℂ)
8988abscld 15346 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈ ℝ)
9019, 89fsumrecl 15641 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈ ℝ)
9119, 88fsumabs 15708 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))))
9247recnd 11143 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))) ∈ ℂ)
9361, 92absmuld 15364 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = ((abs‘(𝑅‘(𝑥 / 𝑛))) · (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))))
9492abscld 15346 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℝ)
9561absge0d 15354 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
9642recnd 11143 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
9746recnd 11143 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
9896, 97abs2dif2d 15368 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ≤ ((abs‘Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) + (abs‘((Λ‘𝑛) · (log‘𝑛)))))
9971recnd 11143 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) ∈ ℂ)
10096, 97addcld 11134 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛))) ∈ ℂ)
10199, 100pncan2d 11477 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆‘(𝑛 − 1)) + (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛)))) − (𝑆‘(𝑛 − 1))) = (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛))))
102 elfzuz 13423 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ (ℤ‘1))
103102adantl 481 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ (ℤ‘1))
104 elfznn 13456 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
105104adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
106 vmacl 27026 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
107105, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (Λ‘𝑘) ∈ ℝ)
108105nnrpd 12935 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℝ+)
109108relogcld 26530 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (log‘𝑘) ∈ ℝ)
110107, 109remulcld 11145 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → ((Λ‘𝑘) · (log‘𝑘)) ∈ ℝ)
111 fzfid 13880 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (1...𝑘) ∈ Fin)
112 dvdsssfz1 16229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ (1...𝑘))
113105, 112syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ (1...𝑘))
114111, 113ssfid 9158 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → {𝑦 ∈ ℕ ∣ 𝑦𝑘} ∈ Fin)
115 ssrab2 4031 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
116 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
117115, 116sselid 3933 . . . . . . . . . . . . . . . . . . . . . . 23 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → 𝑚 ∈ ℕ)
118117, 34syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (Λ‘𝑚) ∈ ℝ)
119 dvdsdivcl 16227 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (𝑘 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
120105, 119sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (𝑘 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
121115, 120sselid 3933 . . . . . . . . . . . . . . . . . . . . . . 23 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (𝑘 / 𝑚) ∈ ℕ)
122 vmacl 27026 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 / 𝑚) ∈ ℕ → (Λ‘(𝑘 / 𝑚)) ∈ ℝ)
123121, 122syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → (Λ‘(𝑘 / 𝑚)) ∈ ℝ)
124118, 123remulcld 11145 . . . . . . . . . . . . . . . . . . . . 21 (((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) ∈ ℝ)
125114, 124fsumrecl 15641 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) ∈ ℝ)
126110, 125readdcld 11144 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) ∈ ℝ)
127126recnd 11143 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...𝑛)) → (((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) ∈ ℂ)
128 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (Λ‘𝑘) = (Λ‘𝑛))
129 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → (log‘𝑘) = (log‘𝑛))
130128, 129oveq12d 7367 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → ((Λ‘𝑘) · (log‘𝑘)) = ((Λ‘𝑛) · (log‘𝑛)))
131 breq2 5096 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑛 → (𝑦𝑘𝑦𝑛))
132131rabbidv 3402 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑛 → {𝑦 ∈ ℕ ∣ 𝑦𝑘} = {𝑦 ∈ ℕ ∣ 𝑦𝑛})
133 fvoveq1 7372 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑛 → (Λ‘(𝑘 / 𝑚)) = (Λ‘(𝑛 / 𝑚)))
134133oveq2d 7365 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑛 → ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) = ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
135134adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 = 𝑛𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) = ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
136132, 135sumeq12rdv 15614 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑛 → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚))) = Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
137130, 136oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑛 → (((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) = (((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
138103, 127, 137fsumm1 15658 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...𝑛)(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) = (Σ𝑘 ∈ (1...(𝑛 − 1))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) + (((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))))
13964pntsval2 27485 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ → (𝑆𝑛) = Σ𝑘 ∈ (1...(⌊‘𝑛))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
14063, 139syl 17 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) = Σ𝑘 ∈ (1...(⌊‘𝑛))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
14122nnzd 12498 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
142 flid 13712 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℤ → (⌊‘𝑛) = 𝑛)
143141, 142syl 17 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘𝑛) = 𝑛)
144143oveq2d 7365 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘𝑛)) = (1...𝑛))
145144sumeq1d 15607 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘𝑛))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) = Σ𝑘 ∈ (1...𝑛)(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
146140, 145eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) = Σ𝑘 ∈ (1...𝑛)(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
14764pntsval2 27485 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 − 1) ∈ ℝ → (𝑆‘(𝑛 − 1)) = Σ𝑘 ∈ (1...(⌊‘(𝑛 − 1)))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
14869, 147syl 17 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) = Σ𝑘 ∈ (1...(⌊‘(𝑛 − 1)))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
149 1zzd 12506 . . . . . . . . . . . . . . . . . . . . . . 23 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℤ)
150141, 149zsubcld 12585 . . . . . . . . . . . . . . . . . . . . . 22 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℤ)
151 flid 13712 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 − 1) ∈ ℤ → (⌊‘(𝑛 − 1)) = (𝑛 − 1))
152150, 151syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑛 − 1)) = (𝑛 − 1))
153152oveq2d 7365 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑛 − 1))) = (1...(𝑛 − 1)))
154153sumeq1d 15607 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘(𝑛 − 1)))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) = Σ𝑘 ∈ (1...(𝑛 − 1))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
155148, 154eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆‘(𝑛 − 1)) = Σ𝑘 ∈ (1...(𝑛 − 1))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))))
15696, 97addcomd 11318 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛))) = (((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
157155, 156oveq12d 7367 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆‘(𝑛 − 1)) + (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛)))) = (Σ𝑘 ∈ (1...(𝑛 − 1))(((Λ‘𝑘) · (log‘𝑘)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((Λ‘𝑚) · (Λ‘(𝑘 / 𝑚)))) + (((Λ‘𝑛) · (log‘𝑛)) + Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))))
158138, 146, 1573eqtr4d 2774 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) = ((𝑆‘(𝑛 − 1)) + (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛)))))
159158oveq1d 7364 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) = (((𝑆‘(𝑛 − 1)) + (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛)))) − (𝑆‘(𝑛 − 1))))
160 vmage0 27029 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 ≤ (Λ‘𝑚))
16133, 160syl 17 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 0 ≤ (Λ‘𝑚))
162 vmage0 27029 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 / 𝑚) ∈ ℕ → 0 ≤ (Λ‘(𝑛 / 𝑚)))
16338, 162syl 17 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 0 ≤ (Λ‘(𝑛 / 𝑚)))
16435, 40, 161, 163mulge0d 11697 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 0 ≤ ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
16530, 41, 164fsumge0 15702 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
16642, 165absidd 15330 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))))
167 vmage0 27029 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
16822, 167syl 17 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
16922nnge1d 12176 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
17063, 169logge0d 26537 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑛))
17144, 45, 168, 170mulge0d 11697 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) · (log‘𝑛)))
17246, 171absidd 15330 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) · (log‘𝑛))) = ((Λ‘𝑛) · (log‘𝑛)))
173166, 172oveq12d 7367 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) + (abs‘((Λ‘𝑛) · (log‘𝑛)))) = (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) + ((Λ‘𝑛) · (log‘𝑛))))
174101, 159, 1733eqtr4d 2774 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (𝑆‘(𝑛 − 1))) = ((abs‘Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) + (abs‘((Λ‘𝑛) · (log‘𝑛)))))
17598, 174breqtrrd 5120 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ≤ ((𝑆𝑛) − (𝑆‘(𝑛 − 1))))
17694, 72, 62, 95, 175lemul2ad 12065 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (abs‘(Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))))
17793, 176eqbrtrd 5114 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))))
17819, 89, 73, 177fsumle 15706 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))))
17985, 90, 74, 91, 178letrd 11273 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))))
18085, 74, 50, 179lediv1dd 12995 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥)))
18186, 75, 60, 180lesub2dd 11737 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ≤ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥))))
18258, 78absmuld 15364 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((𝑅𝑥) · (log‘𝑥))) = ((abs‘(𝑅𝑥)) · (abs‘(log‘𝑥))))
1835, 12logge0d 26537 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ (log‘𝑥))
18417, 183absidd 15330 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(log‘𝑥)) = (log‘𝑥))
185184oveq2d 7365 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (abs‘(log‘𝑥))) = ((abs‘(𝑅𝑥)) · (log‘𝑥)))
186182, 185eqtrd 2764 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((𝑅𝑥) · (log‘𝑥))) = ((abs‘(𝑅𝑥)) · (log‘𝑥)))
18780, 78, 81absdivd 15365 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (abs‘(log‘𝑥))))
188184oveq2d 7365 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (abs‘(log‘𝑥))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥)))
189187, 188eqtrd 2764 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥)))
190186, 189oveq12d 7367 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘((𝑅𝑥) · (log‘𝑥))) − (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) = (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥))))
19179, 82abs2difd 15367 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘((𝑅𝑥) · (log‘𝑥))) − (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) ≤ (abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))))
192190, 191eqbrtrrd 5116 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / (log‘𝑥))) ≤ (abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))))
19376, 87, 84, 181, 192letrd 11273 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) ≤ (abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))))
19476, 84, 13, 193lediv1dd 12995 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ≤ ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / 𝑥))
19552recnd 11143 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) ∈ ℂ)
1965recnd 11143 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
19713rpne0d 12942 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
198195, 196, 197absdivd 15365 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) = ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / (abs‘𝑥)))
19913rpge0d 12941 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
2005, 199absidd 15330 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘𝑥) = 𝑥)
201200oveq2d 7365 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / (abs‘𝑥)) = ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / 𝑥))
202198, 201eqtrd 2764 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) = ((abs‘(((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) / 𝑥))
203194, 202breqtrrd 5120 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ≤ (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)))
204203adantrr 717 . . 3 ((⊤ ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥) ≤ (abs‘((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)))
2051, 56, 57, 77, 204lo1le 15559 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1))
206205mptru 1547 1 (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((abs‘(𝑅‘(𝑥 / 𝑛))) · ((𝑆𝑛) − (𝑆‘(𝑛 − 1)))) / (log‘𝑥))) / 𝑥)) ∈ ≤𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  {crab 3394  wss 3903   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  +∞cpnf 11146   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  cz 12471  cuz 12735  +crp 12893  (,)cioo 13248  ...cfz 13410  cfl 13694  abscabs 15141  𝑂(1)co1 15393  ≤𝑂(1)clo1 15394  Σcsu 15593  cdvds 16163  logclog 26461  Λcvma 27000  ψcchp 27001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-o1 15397  df-lo1 15398  df-sum 15594  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-ulm 26284  df-log 26463  df-cxp 26464  df-atan 26775  df-em 26901  df-cht 27005  df-vma 27006  df-chp 27007  df-ppi 27008  df-mu 27009
This theorem is referenced by:  pntrlog2bndlem4  27489
  Copyright terms: Public domain W3C validator