![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > loclly | Structured version Visualization version GIF version |
Description: If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
loclly | ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 768 | . . . . . . 7 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝐴) | |
2 | simpl 482 | . . . . . . 7 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → Locally 𝐴 = 𝐴) | |
3 | 1, 2 | eleqtrrd 2835 | . . . . . 6 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ Locally 𝐴) |
4 | simprr 770 | . . . . . 6 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑥 ∈ 𝑗) | |
5 | llyrest 23309 | . . . . . 6 ⊢ ((𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) | |
6 | 3, 4, 5 | syl2anc 583 | . . . . 5 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
7 | 6, 2 | eleqtrd 2834 | . . . 4 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
8 | 7 | restnlly 23306 | . . 3 ⊢ (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴) |
9 | id 22 | . . 3 ⊢ (Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴) | |
10 | 8, 9 | eqtrd 2771 | . 2 ⊢ (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴) |
11 | simprl 768 | . . . . . . 7 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝐴) | |
12 | simpl 482 | . . . . . . 7 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑛-Locally 𝐴 = 𝐴) | |
13 | 11, 12 | eleqtrrd 2835 | . . . . . 6 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝑛-Locally 𝐴) |
14 | simprr 770 | . . . . . 6 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑥 ∈ 𝑗) | |
15 | nllyrest 23310 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) | |
16 | 13, 14, 15 | syl2anc 583 | . . . . 5 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) |
17 | 16, 12 | eleqtrd 2834 | . . . 4 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
18 | 17 | restnlly 23306 | . . 3 ⊢ (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴) |
19 | id 22 | . . 3 ⊢ (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴) | |
20 | 18, 19 | eqtr3d 2773 | . 2 ⊢ (𝑛-Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴) |
21 | 10, 20 | impbii 208 | 1 ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 (class class class)co 7412 ↾t crest 17373 Locally clly 23288 𝑛-Locally cnlly 23289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-en 8946 df-fin 8949 df-fi 9412 df-rest 17375 df-topgen 17396 df-top 22716 df-topon 22733 df-bases 22769 df-nei 22922 df-lly 23290 df-nlly 23291 |
This theorem is referenced by: topnlly 23315 |
Copyright terms: Public domain | W3C validator |