MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loclly Structured version   Visualization version   GIF version

Theorem loclly 23496
Description: If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
loclly (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴)

Proof of Theorem loclly
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . . 7 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗𝐴)
2 simpl 482 . . . . . . 7 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → Locally 𝐴 = 𝐴)
31, 2eleqtrrd 2843 . . . . . 6 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗 ∈ Locally 𝐴)
4 simprr 772 . . . . . 6 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑥𝑗)
5 llyrest 23494 . . . . . 6 ((𝑗 ∈ Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ Locally 𝐴)
63, 4, 5syl2anc 584 . . . . 5 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ Locally 𝐴)
76, 2eleqtrd 2842 . . . 4 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
87restnlly 23491 . . 3 (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴)
9 id 22 . . 3 (Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴)
108, 9eqtrd 2776 . 2 (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴)
11 simprl 770 . . . . . . 7 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗𝐴)
12 simpl 482 . . . . . . 7 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑛-Locally 𝐴 = 𝐴)
1311, 12eleqtrrd 2843 . . . . . 6 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗 ∈ 𝑛-Locally 𝐴)
14 simprr 772 . . . . . 6 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑥𝑗)
15 nllyrest 23495 . . . . . 6 ((𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
1613, 14, 15syl2anc 584 . . . . 5 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
1716, 12eleqtrd 2842 . . . 4 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
1817restnlly 23491 . . 3 (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴)
19 id 22 . . 3 (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴)
2018, 19eqtr3d 2778 . 2 (𝑛-Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴)
2110, 20impbii 209 1 (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  (class class class)co 7432  t crest 17466  Locally clly 23473  𝑛-Locally cnlly 23474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-en 8987  df-fin 8990  df-fi 9452  df-rest 17468  df-topgen 17489  df-top 22901  df-topon 22918  df-bases 22954  df-nei 23107  df-lly 23475  df-nlly 23476
This theorem is referenced by:  topnlly  23500
  Copyright terms: Public domain W3C validator