MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loclly Structured version   Visualization version   GIF version

Theorem loclly 23430
Description: If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
loclly (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴)

Proof of Theorem loclly
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . . 7 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗𝐴)
2 simpl 482 . . . . . . 7 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → Locally 𝐴 = 𝐴)
31, 2eleqtrrd 2838 . . . . . 6 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗 ∈ Locally 𝐴)
4 simprr 772 . . . . . 6 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑥𝑗)
5 llyrest 23428 . . . . . 6 ((𝑗 ∈ Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ Locally 𝐴)
63, 4, 5syl2anc 584 . . . . 5 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ Locally 𝐴)
76, 2eleqtrd 2837 . . . 4 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
87restnlly 23425 . . 3 (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴)
9 id 22 . . 3 (Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴)
108, 9eqtrd 2771 . 2 (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴)
11 simprl 770 . . . . . . 7 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗𝐴)
12 simpl 482 . . . . . . 7 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑛-Locally 𝐴 = 𝐴)
1311, 12eleqtrrd 2838 . . . . . 6 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗 ∈ 𝑛-Locally 𝐴)
14 simprr 772 . . . . . 6 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑥𝑗)
15 nllyrest 23429 . . . . . 6 ((𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
1613, 14, 15syl2anc 584 . . . . 5 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
1716, 12eleqtrd 2837 . . . 4 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
1817restnlly 23425 . . 3 (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴)
19 id 22 . . 3 (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴)
2018, 19eqtr3d 2773 . 2 (𝑛-Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴)
2110, 20impbii 209 1 (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7410  t crest 17439  Locally clly 23407  𝑛-Locally cnlly 23408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-en 8965  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-nei 23041  df-lly 23409  df-nlly 23410
This theorem is referenced by:  topnlly  23434
  Copyright terms: Public domain W3C validator