| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > loclly | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| loclly | ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . . . . 7 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝐴) | |
| 2 | simpl 482 | . . . . . . 7 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → Locally 𝐴 = 𝐴) | |
| 3 | 1, 2 | eleqtrrd 2831 | . . . . . 6 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ Locally 𝐴) |
| 4 | simprr 772 | . . . . . 6 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑥 ∈ 𝑗) | |
| 5 | llyrest 23370 | . . . . . 6 ⊢ ((𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . . 5 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
| 7 | 6, 2 | eleqtrd 2830 | . . . 4 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
| 8 | 7 | restnlly 23367 | . . 3 ⊢ (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴) |
| 9 | id 22 | . . 3 ⊢ (Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴) | |
| 10 | 8, 9 | eqtrd 2764 | . 2 ⊢ (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴) |
| 11 | simprl 770 | . . . . . . 7 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝐴) | |
| 12 | simpl 482 | . . . . . . 7 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑛-Locally 𝐴 = 𝐴) | |
| 13 | 11, 12 | eleqtrrd 2831 | . . . . . 6 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝑛-Locally 𝐴) |
| 14 | simprr 772 | . . . . . 6 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑥 ∈ 𝑗) | |
| 15 | nllyrest 23371 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) | |
| 16 | 13, 14, 15 | syl2anc 584 | . . . . 5 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) |
| 17 | 16, 12 | eleqtrd 2830 | . . . 4 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
| 18 | 17 | restnlly 23367 | . . 3 ⊢ (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴) |
| 19 | id 22 | . . 3 ⊢ (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴) | |
| 20 | 18, 19 | eqtr3d 2766 | . 2 ⊢ (𝑛-Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴) |
| 21 | 10, 20 | impbii 209 | 1 ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ↾t crest 17324 Locally clly 23349 𝑛-Locally cnlly 23350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-en 8873 df-fin 8876 df-fi 9301 df-rest 17326 df-topgen 17347 df-top 22779 df-topon 22796 df-bases 22831 df-nei 22983 df-lly 23351 df-nlly 23352 |
| This theorem is referenced by: topnlly 23376 |
| Copyright terms: Public domain | W3C validator |