![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > loclly | Structured version Visualization version GIF version |
Description: If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
loclly | ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . . . . . . 7 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝐴) | |
2 | simpl 482 | . . . . . . 7 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → Locally 𝐴 = 𝐴) | |
3 | 1, 2 | eleqtrrd 2831 | . . . . . 6 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ Locally 𝐴) |
4 | simprr 772 | . . . . . 6 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑥 ∈ 𝑗) | |
5 | llyrest 23382 | . . . . . 6 ⊢ ((𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) | |
6 | 3, 4, 5 | syl2anc 583 | . . . . 5 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
7 | 6, 2 | eleqtrd 2830 | . . . 4 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
8 | 7 | restnlly 23379 | . . 3 ⊢ (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴) |
9 | id 22 | . . 3 ⊢ (Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴) | |
10 | 8, 9 | eqtrd 2767 | . 2 ⊢ (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴) |
11 | simprl 770 | . . . . . . 7 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝐴) | |
12 | simpl 482 | . . . . . . 7 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑛-Locally 𝐴 = 𝐴) | |
13 | 11, 12 | eleqtrrd 2831 | . . . . . 6 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝑛-Locally 𝐴) |
14 | simprr 772 | . . . . . 6 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑥 ∈ 𝑗) | |
15 | nllyrest 23383 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) | |
16 | 13, 14, 15 | syl2anc 583 | . . . . 5 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) |
17 | 16, 12 | eleqtrd 2830 | . . . 4 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
18 | 17 | restnlly 23379 | . . 3 ⊢ (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴) |
19 | id 22 | . . 3 ⊢ (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴) | |
20 | 18, 19 | eqtr3d 2769 | . 2 ⊢ (𝑛-Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴) |
21 | 10, 20 | impbii 208 | 1 ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ↾t crest 17395 Locally clly 23361 𝑛-Locally cnlly 23362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-en 8958 df-fin 8961 df-fi 9428 df-rest 17397 df-topgen 17418 df-top 22789 df-topon 22806 df-bases 22842 df-nei 22995 df-lly 23363 df-nlly 23364 |
This theorem is referenced by: topnlly 23388 |
Copyright terms: Public domain | W3C validator |