MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  loclly Structured version   Visualization version   GIF version

Theorem loclly 22638
Description: If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
loclly (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴)

Proof of Theorem loclly
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 768 . . . . . . 7 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗𝐴)
2 simpl 483 . . . . . . 7 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → Locally 𝐴 = 𝐴)
31, 2eleqtrrd 2842 . . . . . 6 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗 ∈ Locally 𝐴)
4 simprr 770 . . . . . 6 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑥𝑗)
5 llyrest 22636 . . . . . 6 ((𝑗 ∈ Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ Locally 𝐴)
63, 4, 5syl2anc 584 . . . . 5 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ Locally 𝐴)
76, 2eleqtrd 2841 . . . 4 ((Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
87restnlly 22633 . . 3 (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴)
9 id 22 . . 3 (Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴)
108, 9eqtrd 2778 . 2 (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴)
11 simprl 768 . . . . . . 7 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗𝐴)
12 simpl 483 . . . . . . 7 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑛-Locally 𝐴 = 𝐴)
1311, 12eleqtrrd 2842 . . . . . 6 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑗 ∈ 𝑛-Locally 𝐴)
14 simprr 770 . . . . . 6 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → 𝑥𝑗)
15 nllyrest 22637 . . . . . 6 ((𝑗 ∈ 𝑛-Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
1613, 14, 15syl2anc 584 . . . . 5 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝑛-Locally 𝐴)
1716, 12eleqtrd 2841 . . . 4 ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
1817restnlly 22633 . . 3 (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴)
19 id 22 . . 3 (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴)
2018, 19eqtr3d 2780 . 2 (𝑛-Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴)
2110, 20impbii 208 1 (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  (class class class)co 7275  t crest 17131  Locally clly 22615  𝑛-Locally cnlly 22616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-nei 22249  df-lly 22617  df-nlly 22618
This theorem is referenced by:  topnlly  22642
  Copyright terms: Public domain W3C validator