![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > loclly | Structured version Visualization version GIF version |
Description: If 𝐴 is a local property, then both Locally 𝐴 and 𝑛-Locally 𝐴 simplify to 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
loclly | ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . . . . . . 7 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝐴) | |
2 | simpl 484 | . . . . . . 7 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → Locally 𝐴 = 𝐴) | |
3 | 1, 2 | eleqtrrd 2837 | . . . . . 6 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ Locally 𝐴) |
4 | simprr 772 | . . . . . 6 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑥 ∈ 𝑗) | |
5 | llyrest 22859 | . . . . . 6 ⊢ ((𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) | |
6 | 3, 4, 5 | syl2anc 585 | . . . . 5 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
7 | 6, 2 | eleqtrd 2836 | . . . 4 ⊢ ((Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
8 | 7 | restnlly 22856 | . . 3 ⊢ (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴) |
9 | id 22 | . . 3 ⊢ (Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴) | |
10 | 8, 9 | eqtrd 2773 | . 2 ⊢ (Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴) |
11 | simprl 770 | . . . . . . 7 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝐴) | |
12 | simpl 484 | . . . . . . 7 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑛-Locally 𝐴 = 𝐴) | |
13 | 11, 12 | eleqtrrd 2837 | . . . . . 6 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑗 ∈ 𝑛-Locally 𝐴) |
14 | simprr 772 | . . . . . 6 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → 𝑥 ∈ 𝑗) | |
15 | nllyrest 22860 | . . . . . 6 ⊢ ((𝑗 ∈ 𝑛-Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) | |
16 | 13, 14, 15 | syl2anc 585 | . . . . 5 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝑛-Locally 𝐴) |
17 | 16, 12 | eleqtrd 2836 | . . . 4 ⊢ ((𝑛-Locally 𝐴 = 𝐴 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
18 | 17 | restnlly 22856 | . . 3 ⊢ (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = Locally 𝐴) |
19 | id 22 | . . 3 ⊢ (𝑛-Locally 𝐴 = 𝐴 → 𝑛-Locally 𝐴 = 𝐴) | |
20 | 18, 19 | eqtr3d 2775 | . 2 ⊢ (𝑛-Locally 𝐴 = 𝐴 → Locally 𝐴 = 𝐴) |
21 | 10, 20 | impbii 208 | 1 ⊢ (Locally 𝐴 = 𝐴 ↔ 𝑛-Locally 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7361 ↾t crest 17310 Locally clly 22838 𝑛-Locally cnlly 22839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-en 8890 df-fin 8893 df-fi 9355 df-rest 17312 df-topgen 17333 df-top 22266 df-topon 22283 df-bases 22319 df-nei 22472 df-lly 22840 df-nlly 22841 |
This theorem is referenced by: topnlly 22865 |
Copyright terms: Public domain | W3C validator |