Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > renegcld | Structured version Visualization version GIF version |
Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
renegcld | ⊢ (𝜑 → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | renegcl 11214 | . 2 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -𝐴 ∈ ℝ) |
Copyright terms: Public domain | W3C validator |