MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem1 Structured version   Visualization version   GIF version

Theorem mapfienlem1 9094
Description: Lemma 1 for mapfien 9097. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴𝑈)
mapfien.b (𝜑𝐵𝑉)
mapfien.c (𝜑𝐶𝑋)
mapfien.d (𝜑𝐷𝑌)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem1 ((𝜑𝑓𝑆) → (𝐺 ∘ (𝑓𝐹)) finSupp 𝑊)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑓,𝐹   𝑓,𝐺,𝑥   𝜑,𝑓   𝑥,𝐷   𝑆,𝑓   𝑇,𝑓   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑓)   𝑉(𝑥,𝑓)   𝑊(𝑓)   𝑋(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑓)

Proof of Theorem mapfienlem1
StepHypRef Expression
1 mapfien.w . . . 4 𝑊 = (𝐺𝑍)
21fvexi 6770 . . 3 𝑊 ∈ V
32a1i 11 . 2 ((𝜑𝑓𝑆) → 𝑊 ∈ V)
4 mapfien.z . . 3 (𝜑𝑍𝐵)
54adantr 480 . 2 ((𝜑𝑓𝑆) → 𝑍𝐵)
6 elrabi 3611 . . . . 5 (𝑓 ∈ {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓 ∈ (𝐵m 𝐴))
7 elmapi 8595 . . . . 5 (𝑓 ∈ (𝐵m 𝐴) → 𝑓:𝐴𝐵)
86, 7syl 17 . . . 4 (𝑓 ∈ {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓:𝐴𝐵)
9 mapfien.s . . . 4 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
108, 9eleq2s 2857 . . 3 (𝑓𝑆𝑓:𝐴𝐵)
11 mapfien.f . . . 4 (𝜑𝐹:𝐶1-1-onto𝐴)
12 f1of 6700 . . . 4 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
1311, 12syl 17 . . 3 (𝜑𝐹:𝐶𝐴)
14 fco 6608 . . 3 ((𝑓:𝐴𝐵𝐹:𝐶𝐴) → (𝑓𝐹):𝐶𝐵)
1510, 13, 14syl2anr 596 . 2 ((𝜑𝑓𝑆) → (𝑓𝐹):𝐶𝐵)
16 mapfien.g . . . 4 (𝜑𝐺:𝐵1-1-onto𝐷)
17 f1of 6700 . . . 4 (𝐺:𝐵1-1-onto𝐷𝐺:𝐵𝐷)
1816, 17syl 17 . . 3 (𝜑𝐺:𝐵𝐷)
1918adantr 480 . 2 ((𝜑𝑓𝑆) → 𝐺:𝐵𝐷)
20 ssidd 3940 . 2 ((𝜑𝑓𝑆) → 𝐵𝐵)
21 mapfien.c . . 3 (𝜑𝐶𝑋)
2221adantr 480 . 2 ((𝜑𝑓𝑆) → 𝐶𝑋)
23 mapfien.b . . 3 (𝜑𝐵𝑉)
2423adantr 480 . 2 ((𝜑𝑓𝑆) → 𝐵𝑉)
25 breq1 5073 . . . . . 6 (𝑥 = 𝑓 → (𝑥 finSupp 𝑍𝑓 finSupp 𝑍))
2625, 9elrab2 3620 . . . . 5 (𝑓𝑆 ↔ (𝑓 ∈ (𝐵m 𝐴) ∧ 𝑓 finSupp 𝑍))
2726simprbi 496 . . . 4 (𝑓𝑆𝑓 finSupp 𝑍)
2827adantl 481 . . 3 ((𝜑𝑓𝑆) → 𝑓 finSupp 𝑍)
29 f1of1 6699 . . . . 5 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1𝐴)
3011, 29syl 17 . . . 4 (𝜑𝐹:𝐶1-1𝐴)
3130adantr 480 . . 3 ((𝜑𝑓𝑆) → 𝐹:𝐶1-1𝐴)
32 simpr 484 . . 3 ((𝜑𝑓𝑆) → 𝑓𝑆)
3328, 31, 5, 32fsuppco 9091 . 2 ((𝜑𝑓𝑆) → (𝑓𝐹) finSupp 𝑍)
341eqcomi 2747 . . 3 (𝐺𝑍) = 𝑊
3534a1i 11 . 2 ((𝜑𝑓𝑆) → (𝐺𝑍) = 𝑊)
363, 5, 15, 19, 20, 22, 24, 33, 35fsuppcor 9093 1 ((𝜑𝑓𝑆) → (𝐺 ∘ (𝑓𝐹)) finSupp 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422   class class class wbr 5070  ccom 5584  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  m cmap 8573   finSupp cfsupp 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-1o 8267  df-map 8575  df-en 8692  df-fin 8695  df-fsupp 9059
This theorem is referenced by:  mapfien  9097
  Copyright terms: Public domain W3C validator