MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem1 Structured version   Visualization version   GIF version

Theorem mapfienlem1 9446
Description: Lemma 1 for mapfien 9449. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴𝑈)
mapfien.b (𝜑𝐵𝑉)
mapfien.c (𝜑𝐶𝑋)
mapfien.d (𝜑𝐷𝑌)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem1 ((𝜑𝑓𝑆) → (𝐺 ∘ (𝑓𝐹)) finSupp 𝑊)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑓,𝐹   𝑓,𝐺,𝑥   𝜑,𝑓   𝑥,𝐷   𝑆,𝑓   𝑇,𝑓   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑓)   𝑉(𝑥,𝑓)   𝑊(𝑓)   𝑋(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑓)

Proof of Theorem mapfienlem1
StepHypRef Expression
1 mapfien.w . . . 4 𝑊 = (𝐺𝑍)
21fvexi 6919 . . 3 𝑊 ∈ V
32a1i 11 . 2 ((𝜑𝑓𝑆) → 𝑊 ∈ V)
4 mapfien.z . . 3 (𝜑𝑍𝐵)
54adantr 480 . 2 ((𝜑𝑓𝑆) → 𝑍𝐵)
6 elrabi 3686 . . . . 5 (𝑓 ∈ {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓 ∈ (𝐵m 𝐴))
7 elmapi 8890 . . . . 5 (𝑓 ∈ (𝐵m 𝐴) → 𝑓:𝐴𝐵)
86, 7syl 17 . . . 4 (𝑓 ∈ {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓:𝐴𝐵)
9 mapfien.s . . . 4 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
108, 9eleq2s 2858 . . 3 (𝑓𝑆𝑓:𝐴𝐵)
11 mapfien.f . . . 4 (𝜑𝐹:𝐶1-1-onto𝐴)
12 f1of 6847 . . . 4 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
1311, 12syl 17 . . 3 (𝜑𝐹:𝐶𝐴)
14 fco 6759 . . 3 ((𝑓:𝐴𝐵𝐹:𝐶𝐴) → (𝑓𝐹):𝐶𝐵)
1510, 13, 14syl2anr 597 . 2 ((𝜑𝑓𝑆) → (𝑓𝐹):𝐶𝐵)
16 mapfien.g . . . 4 (𝜑𝐺:𝐵1-1-onto𝐷)
17 f1of 6847 . . . 4 (𝐺:𝐵1-1-onto𝐷𝐺:𝐵𝐷)
1816, 17syl 17 . . 3 (𝜑𝐺:𝐵𝐷)
1918adantr 480 . 2 ((𝜑𝑓𝑆) → 𝐺:𝐵𝐷)
20 ssidd 4006 . 2 ((𝜑𝑓𝑆) → 𝐵𝐵)
21 mapfien.c . . 3 (𝜑𝐶𝑋)
2221adantr 480 . 2 ((𝜑𝑓𝑆) → 𝐶𝑋)
23 mapfien.b . . 3 (𝜑𝐵𝑉)
2423adantr 480 . 2 ((𝜑𝑓𝑆) → 𝐵𝑉)
25 breq1 5145 . . . . . 6 (𝑥 = 𝑓 → (𝑥 finSupp 𝑍𝑓 finSupp 𝑍))
2625, 9elrab2 3694 . . . . 5 (𝑓𝑆 ↔ (𝑓 ∈ (𝐵m 𝐴) ∧ 𝑓 finSupp 𝑍))
2726simprbi 496 . . . 4 (𝑓𝑆𝑓 finSupp 𝑍)
2827adantl 481 . . 3 ((𝜑𝑓𝑆) → 𝑓 finSupp 𝑍)
29 f1of1 6846 . . . . 5 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1𝐴)
3011, 29syl 17 . . . 4 (𝜑𝐹:𝐶1-1𝐴)
3130adantr 480 . . 3 ((𝜑𝑓𝑆) → 𝐹:𝐶1-1𝐴)
32 simpr 484 . . 3 ((𝜑𝑓𝑆) → 𝑓𝑆)
3328, 31, 5, 32fsuppco 9443 . 2 ((𝜑𝑓𝑆) → (𝑓𝐹) finSupp 𝑍)
341eqcomi 2745 . . 3 (𝐺𝑍) = 𝑊
3534a1i 11 . 2 ((𝜑𝑓𝑆) → (𝐺𝑍) = 𝑊)
363, 5, 15, 19, 20, 22, 24, 33, 35fsuppcor 9445 1 ((𝜑𝑓𝑆) → (𝐺 ∘ (𝑓𝐹)) finSupp 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479   class class class wbr 5142  ccom 5688  wf 6556  1-1wf1 6557  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  m cmap 8867   finSupp cfsupp 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-1o 8507  df-map 8869  df-en 8987  df-dom 8988  df-fin 8990  df-fsupp 9403
This theorem is referenced by:  mapfien  9449
  Copyright terms: Public domain W3C validator