MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem1 Structured version   Visualization version   GIF version

Theorem mapfienlem1 9402
Description: Lemma 1 for mapfien 9405. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴𝑈)
mapfien.b (𝜑𝐵𝑉)
mapfien.c (𝜑𝐶𝑋)
mapfien.d (𝜑𝐷𝑌)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem1 ((𝜑𝑓𝑆) → (𝐺 ∘ (𝑓𝐹)) finSupp 𝑊)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑓,𝐹   𝑓,𝐺,𝑥   𝜑,𝑓   𝑥,𝐷   𝑆,𝑓   𝑇,𝑓   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑓)   𝑉(𝑥,𝑓)   𝑊(𝑓)   𝑋(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑓)

Proof of Theorem mapfienlem1
StepHypRef Expression
1 mapfien.w . . . 4 𝑊 = (𝐺𝑍)
21fvexi 6899 . . 3 𝑊 ∈ V
32a1i 11 . 2 ((𝜑𝑓𝑆) → 𝑊 ∈ V)
4 mapfien.z . . 3 (𝜑𝑍𝐵)
54adantr 480 . 2 ((𝜑𝑓𝑆) → 𝑍𝐵)
6 elrabi 3672 . . . . 5 (𝑓 ∈ {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓 ∈ (𝐵m 𝐴))
7 elmapi 8845 . . . . 5 (𝑓 ∈ (𝐵m 𝐴) → 𝑓:𝐴𝐵)
86, 7syl 17 . . . 4 (𝑓 ∈ {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓:𝐴𝐵)
9 mapfien.s . . . 4 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
108, 9eleq2s 2845 . . 3 (𝑓𝑆𝑓:𝐴𝐵)
11 mapfien.f . . . 4 (𝜑𝐹:𝐶1-1-onto𝐴)
12 f1of 6827 . . . 4 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
1311, 12syl 17 . . 3 (𝜑𝐹:𝐶𝐴)
14 fco 6735 . . 3 ((𝑓:𝐴𝐵𝐹:𝐶𝐴) → (𝑓𝐹):𝐶𝐵)
1510, 13, 14syl2anr 596 . 2 ((𝜑𝑓𝑆) → (𝑓𝐹):𝐶𝐵)
16 mapfien.g . . . 4 (𝜑𝐺:𝐵1-1-onto𝐷)
17 f1of 6827 . . . 4 (𝐺:𝐵1-1-onto𝐷𝐺:𝐵𝐷)
1816, 17syl 17 . . 3 (𝜑𝐺:𝐵𝐷)
1918adantr 480 . 2 ((𝜑𝑓𝑆) → 𝐺:𝐵𝐷)
20 ssidd 4000 . 2 ((𝜑𝑓𝑆) → 𝐵𝐵)
21 mapfien.c . . 3 (𝜑𝐶𝑋)
2221adantr 480 . 2 ((𝜑𝑓𝑆) → 𝐶𝑋)
23 mapfien.b . . 3 (𝜑𝐵𝑉)
2423adantr 480 . 2 ((𝜑𝑓𝑆) → 𝐵𝑉)
25 breq1 5144 . . . . . 6 (𝑥 = 𝑓 → (𝑥 finSupp 𝑍𝑓 finSupp 𝑍))
2625, 9elrab2 3681 . . . . 5 (𝑓𝑆 ↔ (𝑓 ∈ (𝐵m 𝐴) ∧ 𝑓 finSupp 𝑍))
2726simprbi 496 . . . 4 (𝑓𝑆𝑓 finSupp 𝑍)
2827adantl 481 . . 3 ((𝜑𝑓𝑆) → 𝑓 finSupp 𝑍)
29 f1of1 6826 . . . . 5 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1𝐴)
3011, 29syl 17 . . . 4 (𝜑𝐹:𝐶1-1𝐴)
3130adantr 480 . . 3 ((𝜑𝑓𝑆) → 𝐹:𝐶1-1𝐴)
32 simpr 484 . . 3 ((𝜑𝑓𝑆) → 𝑓𝑆)
3328, 31, 5, 32fsuppco 9399 . 2 ((𝜑𝑓𝑆) → (𝑓𝐹) finSupp 𝑍)
341eqcomi 2735 . . 3 (𝐺𝑍) = 𝑊
3534a1i 11 . 2 ((𝜑𝑓𝑆) → (𝐺𝑍) = 𝑊)
363, 5, 15, 19, 20, 22, 24, 33, 35fsuppcor 9401 1 ((𝜑𝑓𝑆) → (𝐺 ∘ (𝑓𝐹)) finSupp 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468   class class class wbr 5141  ccom 5673  wf 6533  1-1wf1 6534  1-1-ontowf1o 6536  cfv 6537  (class class class)co 7405  m cmap 8822   finSupp cfsupp 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-1o 8467  df-map 8824  df-en 8942  df-fin 8945  df-fsupp 9364
This theorem is referenced by:  mapfien  9405
  Copyright terms: Public domain W3C validator