MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfienlem1 Structured version   Visualization version   GIF version

Theorem mapfienlem1 9349
Description: Lemma 1 for mapfien 9352. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.)
Hypotheses
Ref Expression
mapfien.s 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
mapfien.t 𝑇 = {𝑥 ∈ (𝐷m 𝐶) ∣ 𝑥 finSupp 𝑊}
mapfien.w 𝑊 = (𝐺𝑍)
mapfien.f (𝜑𝐹:𝐶1-1-onto𝐴)
mapfien.g (𝜑𝐺:𝐵1-1-onto𝐷)
mapfien.a (𝜑𝐴𝑈)
mapfien.b (𝜑𝐵𝑉)
mapfien.c (𝜑𝐶𝑋)
mapfien.d (𝜑𝐷𝑌)
mapfien.z (𝜑𝑍𝐵)
Assertion
Ref Expression
mapfienlem1 ((𝜑𝑓𝑆) → (𝐺 ∘ (𝑓𝐹)) finSupp 𝑊)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑓,𝐹   𝑓,𝐺,𝑥   𝜑,𝑓   𝑥,𝐷   𝑆,𝑓   𝑇,𝑓   𝑥,𝑊   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑓)   𝑉(𝑥,𝑓)   𝑊(𝑓)   𝑋(𝑥,𝑓)   𝑌(𝑥,𝑓)   𝑍(𝑓)

Proof of Theorem mapfienlem1
StepHypRef Expression
1 mapfien.w . . . 4 𝑊 = (𝐺𝑍)
21fvexi 6860 . . 3 𝑊 ∈ V
32a1i 11 . 2 ((𝜑𝑓𝑆) → 𝑊 ∈ V)
4 mapfien.z . . 3 (𝜑𝑍𝐵)
54adantr 482 . 2 ((𝜑𝑓𝑆) → 𝑍𝐵)
6 elrabi 3643 . . . . 5 (𝑓 ∈ {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓 ∈ (𝐵m 𝐴))
7 elmapi 8793 . . . . 5 (𝑓 ∈ (𝐵m 𝐴) → 𝑓:𝐴𝐵)
86, 7syl 17 . . . 4 (𝑓 ∈ {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓:𝐴𝐵)
9 mapfien.s . . . 4 𝑆 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
108, 9eleq2s 2852 . . 3 (𝑓𝑆𝑓:𝐴𝐵)
11 mapfien.f . . . 4 (𝜑𝐹:𝐶1-1-onto𝐴)
12 f1of 6788 . . . 4 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
1311, 12syl 17 . . 3 (𝜑𝐹:𝐶𝐴)
14 fco 6696 . . 3 ((𝑓:𝐴𝐵𝐹:𝐶𝐴) → (𝑓𝐹):𝐶𝐵)
1510, 13, 14syl2anr 598 . 2 ((𝜑𝑓𝑆) → (𝑓𝐹):𝐶𝐵)
16 mapfien.g . . . 4 (𝜑𝐺:𝐵1-1-onto𝐷)
17 f1of 6788 . . . 4 (𝐺:𝐵1-1-onto𝐷𝐺:𝐵𝐷)
1816, 17syl 17 . . 3 (𝜑𝐺:𝐵𝐷)
1918adantr 482 . 2 ((𝜑𝑓𝑆) → 𝐺:𝐵𝐷)
20 ssidd 3971 . 2 ((𝜑𝑓𝑆) → 𝐵𝐵)
21 mapfien.c . . 3 (𝜑𝐶𝑋)
2221adantr 482 . 2 ((𝜑𝑓𝑆) → 𝐶𝑋)
23 mapfien.b . . 3 (𝜑𝐵𝑉)
2423adantr 482 . 2 ((𝜑𝑓𝑆) → 𝐵𝑉)
25 breq1 5112 . . . . . 6 (𝑥 = 𝑓 → (𝑥 finSupp 𝑍𝑓 finSupp 𝑍))
2625, 9elrab2 3652 . . . . 5 (𝑓𝑆 ↔ (𝑓 ∈ (𝐵m 𝐴) ∧ 𝑓 finSupp 𝑍))
2726simprbi 498 . . . 4 (𝑓𝑆𝑓 finSupp 𝑍)
2827adantl 483 . . 3 ((𝜑𝑓𝑆) → 𝑓 finSupp 𝑍)
29 f1of1 6787 . . . . 5 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1𝐴)
3011, 29syl 17 . . . 4 (𝜑𝐹:𝐶1-1𝐴)
3130adantr 482 . . 3 ((𝜑𝑓𝑆) → 𝐹:𝐶1-1𝐴)
32 simpr 486 . . 3 ((𝜑𝑓𝑆) → 𝑓𝑆)
3328, 31, 5, 32fsuppco 9346 . 2 ((𝜑𝑓𝑆) → (𝑓𝐹) finSupp 𝑍)
341eqcomi 2742 . . 3 (𝐺𝑍) = 𝑊
3534a1i 11 . 2 ((𝜑𝑓𝑆) → (𝐺𝑍) = 𝑊)
363, 5, 15, 19, 20, 22, 24, 33, 35fsuppcor 9348 1 ((𝜑𝑓𝑆) → (𝐺 ∘ (𝑓𝐹)) finSupp 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {crab 3406  Vcvv 3447   class class class wbr 5109  ccom 5641  wf 6496  1-1wf1 6497  1-1-ontowf1o 6499  cfv 6500  (class class class)co 7361  m cmap 8771   finSupp cfsupp 9311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-1o 8416  df-map 8773  df-en 8890  df-fin 8893  df-fsupp 9312
This theorem is referenced by:  mapfien  9352
  Copyright terms: Public domain W3C validator