![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapfienlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for mapfien 9446. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
Ref | Expression |
---|---|
mapfien.s | ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} |
mapfien.t | ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} |
mapfien.w | ⊢ 𝑊 = (𝐺‘𝑍) |
mapfien.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
mapfien.g | ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) |
mapfien.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
mapfien.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
mapfien.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
mapfien.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
mapfien.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
mapfienlem1 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfien.w | . . . 4 ⊢ 𝑊 = (𝐺‘𝑍) | |
2 | 1 | fvexi 6921 | . . 3 ⊢ 𝑊 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑊 ∈ V) |
4 | mapfien.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑍 ∈ 𝐵) |
6 | elrabi 3690 | . . . . 5 ⊢ (𝑓 ∈ {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓 ∈ (𝐵 ↑m 𝐴)) | |
7 | elmapi 8888 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝐴) → 𝑓:𝐴⟶𝐵) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓:𝐴⟶𝐵) |
9 | mapfien.s | . . . 4 ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} | |
10 | 8, 9 | eleq2s 2857 | . . 3 ⊢ (𝑓 ∈ 𝑆 → 𝑓:𝐴⟶𝐵) |
11 | mapfien.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) | |
12 | f1of 6849 | . . . 4 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
14 | fco 6761 | . . 3 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝐹:𝐶⟶𝐴) → (𝑓 ∘ 𝐹):𝐶⟶𝐵) | |
15 | 10, 13, 14 | syl2anr 597 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝑓 ∘ 𝐹):𝐶⟶𝐵) |
16 | mapfien.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) | |
17 | f1of 6849 | . . . 4 ⊢ (𝐺:𝐵–1-1-onto→𝐷 → 𝐺:𝐵⟶𝐷) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
19 | 18 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐺:𝐵⟶𝐷) |
20 | ssidd 4019 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐵 ⊆ 𝐵) | |
21 | mapfien.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
22 | 21 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐶 ∈ 𝑋) |
23 | mapfien.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
24 | 23 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
25 | breq1 5151 | . . . . . 6 ⊢ (𝑥 = 𝑓 → (𝑥 finSupp 𝑍 ↔ 𝑓 finSupp 𝑍)) | |
26 | 25, 9 | elrab2 3698 | . . . . 5 ⊢ (𝑓 ∈ 𝑆 ↔ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑓 finSupp 𝑍)) |
27 | 26 | simprbi 496 | . . . 4 ⊢ (𝑓 ∈ 𝑆 → 𝑓 finSupp 𝑍) |
28 | 27 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑓 finSupp 𝑍) |
29 | f1of1 6848 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶–1-1→𝐴) | |
30 | 11, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐴) |
31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐹:𝐶–1-1→𝐴) |
32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑓 ∈ 𝑆) | |
33 | 28, 31, 5, 32 | fsuppco 9440 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝑓 ∘ 𝐹) finSupp 𝑍) |
34 | 1 | eqcomi 2744 | . . 3 ⊢ (𝐺‘𝑍) = 𝑊 |
35 | 34 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺‘𝑍) = 𝑊) |
36 | 3, 5, 15, 19, 20, 22, 24, 33, 35 | fsuppcor 9442 | 1 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 class class class wbr 5148 ∘ ccom 5693 ⟶wf 6559 –1-1→wf1 6560 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 finSupp cfsupp 9399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-1o 8505 df-map 8867 df-en 8985 df-dom 8986 df-fin 8988 df-fsupp 9400 |
This theorem is referenced by: mapfien 9446 |
Copyright terms: Public domain | W3C validator |