| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfienlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for mapfien 9359. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
| Ref | Expression |
|---|---|
| mapfien.s | ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} |
| mapfien.t | ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} |
| mapfien.w | ⊢ 𝑊 = (𝐺‘𝑍) |
| mapfien.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
| mapfien.g | ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) |
| mapfien.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| mapfien.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| mapfien.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| mapfien.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| mapfien.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mapfienlem1 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien.w | . . . 4 ⊢ 𝑊 = (𝐺‘𝑍) | |
| 2 | 1 | fvexi 6872 | . . 3 ⊢ 𝑊 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑊 ∈ V) |
| 4 | mapfien.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑍 ∈ 𝐵) |
| 6 | elrabi 3654 | . . . . 5 ⊢ (𝑓 ∈ {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓 ∈ (𝐵 ↑m 𝐴)) | |
| 7 | elmapi 8822 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝐴) → 𝑓:𝐴⟶𝐵) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓:𝐴⟶𝐵) |
| 9 | mapfien.s | . . . 4 ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} | |
| 10 | 8, 9 | eleq2s 2846 | . . 3 ⊢ (𝑓 ∈ 𝑆 → 𝑓:𝐴⟶𝐵) |
| 11 | mapfien.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) | |
| 12 | f1of 6800 | . . . 4 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
| 14 | fco 6712 | . . 3 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝐹:𝐶⟶𝐴) → (𝑓 ∘ 𝐹):𝐶⟶𝐵) | |
| 15 | 10, 13, 14 | syl2anr 597 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝑓 ∘ 𝐹):𝐶⟶𝐵) |
| 16 | mapfien.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) | |
| 17 | f1of 6800 | . . . 4 ⊢ (𝐺:𝐵–1-1-onto→𝐷 → 𝐺:𝐵⟶𝐷) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
| 19 | 18 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐺:𝐵⟶𝐷) |
| 20 | ssidd 3970 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐵 ⊆ 𝐵) | |
| 21 | mapfien.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 22 | 21 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐶 ∈ 𝑋) |
| 23 | mapfien.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 24 | 23 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
| 25 | breq1 5110 | . . . . . 6 ⊢ (𝑥 = 𝑓 → (𝑥 finSupp 𝑍 ↔ 𝑓 finSupp 𝑍)) | |
| 26 | 25, 9 | elrab2 3662 | . . . . 5 ⊢ (𝑓 ∈ 𝑆 ↔ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑓 finSupp 𝑍)) |
| 27 | 26 | simprbi 496 | . . . 4 ⊢ (𝑓 ∈ 𝑆 → 𝑓 finSupp 𝑍) |
| 28 | 27 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑓 finSupp 𝑍) |
| 29 | f1of1 6799 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶–1-1→𝐴) | |
| 30 | 11, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐴) |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐹:𝐶–1-1→𝐴) |
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑓 ∈ 𝑆) | |
| 33 | 28, 31, 5, 32 | fsuppco 9353 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝑓 ∘ 𝐹) finSupp 𝑍) |
| 34 | 1 | eqcomi 2738 | . . 3 ⊢ (𝐺‘𝑍) = 𝑊 |
| 35 | 34 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺‘𝑍) = 𝑊) |
| 36 | 3, 5, 15, 19, 20, 22, 24, 33, 35 | fsuppcor 9355 | 1 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 class class class wbr 5107 ∘ ccom 5642 ⟶wf 6507 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 finSupp cfsupp 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-1o 8434 df-map 8801 df-en 8919 df-dom 8920 df-fin 8922 df-fsupp 9313 |
| This theorem is referenced by: mapfien 9359 |
| Copyright terms: Public domain | W3C validator |