| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfienlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for mapfien 9425. (Contributed by AV, 3-Jul-2019.) (Revised by AV, 28-Jul-2024.) |
| Ref | Expression |
|---|---|
| mapfien.s | ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} |
| mapfien.t | ⊢ 𝑇 = {𝑥 ∈ (𝐷 ↑m 𝐶) ∣ 𝑥 finSupp 𝑊} |
| mapfien.w | ⊢ 𝑊 = (𝐺‘𝑍) |
| mapfien.f | ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) |
| mapfien.g | ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) |
| mapfien.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| mapfien.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| mapfien.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| mapfien.d | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
| mapfien.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mapfienlem1 | ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapfien.w | . . . 4 ⊢ 𝑊 = (𝐺‘𝑍) | |
| 2 | 1 | fvexi 6895 | . . 3 ⊢ 𝑊 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑊 ∈ V) |
| 4 | mapfien.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑍 ∈ 𝐵) |
| 6 | elrabi 3671 | . . . . 5 ⊢ (𝑓 ∈ {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓 ∈ (𝐵 ↑m 𝐴)) | |
| 7 | elmapi 8868 | . . . . 5 ⊢ (𝑓 ∈ (𝐵 ↑m 𝐴) → 𝑓:𝐴⟶𝐵) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} → 𝑓:𝐴⟶𝐵) |
| 9 | mapfien.s | . . . 4 ⊢ 𝑆 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} | |
| 10 | 8, 9 | eleq2s 2853 | . . 3 ⊢ (𝑓 ∈ 𝑆 → 𝑓:𝐴⟶𝐵) |
| 11 | mapfien.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴) | |
| 12 | f1of 6823 | . . . 4 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶⟶𝐴) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐶⟶𝐴) |
| 14 | fco 6735 | . . 3 ⊢ ((𝑓:𝐴⟶𝐵 ∧ 𝐹:𝐶⟶𝐴) → (𝑓 ∘ 𝐹):𝐶⟶𝐵) | |
| 15 | 10, 13, 14 | syl2anr 597 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝑓 ∘ 𝐹):𝐶⟶𝐵) |
| 16 | mapfien.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) | |
| 17 | f1of 6823 | . . . 4 ⊢ (𝐺:𝐵–1-1-onto→𝐷 → 𝐺:𝐵⟶𝐷) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) |
| 19 | 18 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐺:𝐵⟶𝐷) |
| 20 | ssidd 3987 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐵 ⊆ 𝐵) | |
| 21 | mapfien.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 22 | 21 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐶 ∈ 𝑋) |
| 23 | mapfien.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 24 | 23 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐵 ∈ 𝑉) |
| 25 | breq1 5127 | . . . . . 6 ⊢ (𝑥 = 𝑓 → (𝑥 finSupp 𝑍 ↔ 𝑓 finSupp 𝑍)) | |
| 26 | 25, 9 | elrab2 3679 | . . . . 5 ⊢ (𝑓 ∈ 𝑆 ↔ (𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑓 finSupp 𝑍)) |
| 27 | 26 | simprbi 496 | . . . 4 ⊢ (𝑓 ∈ 𝑆 → 𝑓 finSupp 𝑍) |
| 28 | 27 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑓 finSupp 𝑍) |
| 29 | f1of1 6822 | . . . . 5 ⊢ (𝐹:𝐶–1-1-onto→𝐴 → 𝐹:𝐶–1-1→𝐴) | |
| 30 | 11, 29 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐴) |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝐹:𝐶–1-1→𝐴) |
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → 𝑓 ∈ 𝑆) | |
| 33 | 28, 31, 5, 32 | fsuppco 9419 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝑓 ∘ 𝐹) finSupp 𝑍) |
| 34 | 1 | eqcomi 2745 | . . 3 ⊢ (𝐺‘𝑍) = 𝑊 |
| 35 | 34 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺‘𝑍) = 𝑊) |
| 36 | 3, 5, 15, 19, 20, 22, 24, 33, 35 | fsuppcor 9421 | 1 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑆) → (𝐺 ∘ (𝑓 ∘ 𝐹)) finSupp 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 class class class wbr 5124 ∘ ccom 5663 ⟶wf 6532 –1-1→wf1 6533 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 finSupp cfsupp 9378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-1o 8485 df-map 8847 df-en 8965 df-dom 8966 df-fin 8968 df-fsupp 9379 |
| This theorem is referenced by: mapfien 9425 |
| Copyright terms: Public domain | W3C validator |