Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnheibor Structured version   Visualization version   GIF version

Theorem rrnheibor 37831
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
rrnheibor.1 𝑋 = (ℝ ↑m 𝐼)
rrnheibor.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
rrnheibor.3 𝑇 = (MetOpen‘𝑀)
rrnheibor.4 𝑈 = (MetOpen‘(ℝn𝐼))
Assertion
Ref Expression
rrnheibor ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem rrnheibor
StepHypRef Expression
1 rrnheibor.1 . . . . . 6 𝑋 = (ℝ ↑m 𝐼)
21rrnmet 37823 . . . . 5 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
3 rrnheibor.2 . . . . . 6 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
4 metres2 24251 . . . . . 6 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
53, 4eqeltrid 2832 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
62, 5sylan 580 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
76biantrurd 532 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp)))
8 rrnheibor.3 . . . 4 𝑇 = (MetOpen‘𝑀)
98heibor 37815 . . 3 ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))
107, 9bitrdi 287 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))))
113eleq1i 2819 . . . 4 (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
121rrncms 37827 . . . . . 6 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (CMet‘𝑋))
1312adantr 480 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (ℝn𝐼) ∈ (CMet‘𝑋))
14 rrnheibor.4 . . . . . 6 𝑈 = (MetOpen‘(ℝn𝐼))
1514cmetss 25216 . . . . 5 ((ℝn𝐼) ∈ (CMet‘𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1613, 15syl 17 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1711, 16bitrid 283 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
181, 3rrntotbnd 37830 . . . 4 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
1918adantr 480 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
2017, 19anbi12d 632 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
2110, 20bitrd 279 1 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cr 11067  Metcmet 21250  MetOpencmopn 21254  Clsdccld 22903  Compccmp 23273  CMetccmet 25154  TotBndctotbnd 37760  Bndcbnd 37761  ncrrn 37819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-gz 16901  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-topgen 17406  df-prds 17410  df-pws 17412  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lm 23116  df-haus 23202  df-cmp 23274  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-cfil 25155  df-cau 25156  df-cmet 25157  df-totbnd 37762  df-bnd 37773  df-rrn 37820
This theorem is referenced by:  reheibor  37833
  Copyright terms: Public domain W3C validator