Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnheibor | Structured version Visualization version GIF version |
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
rrnheibor.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
rrnheibor.2 | ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) |
rrnheibor.3 | ⊢ 𝑇 = (MetOpen‘𝑀) |
rrnheibor.4 | ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) |
Ref | Expression |
---|---|
rrnheibor | ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrnheibor.1 | . . . . . 6 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
2 | 1 | rrnmet 35914 | . . . . 5 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (Met‘𝑋)) |
3 | rrnheibor.2 | . . . . . 6 ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) | |
4 | metres2 23424 | . . . . . 6 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) | |
5 | 3, 4 | eqeltrid 2843 | . . . . 5 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
6 | 2, 5 | sylan 579 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
7 | 6 | biantrurd 532 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp))) |
8 | rrnheibor.3 | . . . 4 ⊢ 𝑇 = (MetOpen‘𝑀) | |
9 | 8 | heibor 35906 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))) |
10 | 7, 9 | bitrdi 286 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))) |
11 | 3 | eleq1i 2829 | . . . 4 ⊢ (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
12 | 1 | rrncms 35918 | . . . . . 6 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
14 | rrnheibor.4 | . . . . . 6 ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) | |
15 | 14 | cmetss 24385 | . . . . 5 ⊢ ((ℝn‘𝐼) ∈ (CMet‘𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
17 | 11, 16 | syl5bb 282 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
18 | 1, 3 | rrntotbnd 35921 | . . . 4 ⊢ (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
20 | 17, 19 | anbi12d 630 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
21 | 10, 20 | bitrd 278 | 1 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 ℝcr 10801 Metcmet 20496 MetOpencmopn 20500 Clsdccld 22075 Compccmp 22445 CMetccmet 24323 TotBndctotbnd 35851 Bndcbnd 35852 ℝncrrn 35910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ec 8458 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-gz 16559 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-topgen 17071 df-prds 17075 df-pws 17077 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lm 22288 df-haus 22374 df-cmp 22446 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-cfil 24324 df-cau 24325 df-cmet 24326 df-totbnd 35853 df-bnd 35864 df-rrn 35911 |
This theorem is referenced by: reheibor 35924 |
Copyright terms: Public domain | W3C validator |