Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnheibor Structured version   Visualization version   GIF version

Theorem rrnheibor 35991
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
rrnheibor.1 𝑋 = (ℝ ↑m 𝐼)
rrnheibor.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
rrnheibor.3 𝑇 = (MetOpen‘𝑀)
rrnheibor.4 𝑈 = (MetOpen‘(ℝn𝐼))
Assertion
Ref Expression
rrnheibor ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem rrnheibor
StepHypRef Expression
1 rrnheibor.1 . . . . . 6 𝑋 = (ℝ ↑m 𝐼)
21rrnmet 35983 . . . . 5 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
3 rrnheibor.2 . . . . . 6 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
4 metres2 23514 . . . . . 6 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
53, 4eqeltrid 2845 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
62, 5sylan 580 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
76biantrurd 533 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp)))
8 rrnheibor.3 . . . 4 𝑇 = (MetOpen‘𝑀)
98heibor 35975 . . 3 ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))
107, 9bitrdi 287 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))))
113eleq1i 2831 . . . 4 (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
121rrncms 35987 . . . . . 6 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (CMet‘𝑋))
1312adantr 481 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (ℝn𝐼) ∈ (CMet‘𝑋))
14 rrnheibor.4 . . . . . 6 𝑈 = (MetOpen‘(ℝn𝐼))
1514cmetss 24478 . . . . 5 ((ℝn𝐼) ∈ (CMet‘𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1613, 15syl 17 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1711, 16syl5bb 283 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
181, 3rrntotbnd 35990 . . . 4 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
1918adantr 481 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
2017, 19anbi12d 631 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
2110, 20bitrd 278 1 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wss 3892   × cxp 5588  cres 5592  cfv 6432  (class class class)co 7271  m cmap 8598  Fincfn 8716  cr 10871  Metcmet 20581  MetOpencmopn 20585  Clsdccld 22165  Compccmp 22535  CMetccmet 24416  TotBndctotbnd 35920  Bndcbnd 35921  ncrrn 35979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cc 10192  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-oadd 8292  df-omul 8293  df-er 8481  df-ec 8483  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-acn 9701  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-gz 16629  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-topgen 17152  df-prds 17156  df-pws 17158  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lm 22378  df-haus 22464  df-cmp 22536  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-cfil 24417  df-cau 24418  df-cmet 24419  df-totbnd 35922  df-bnd 35933  df-rrn 35980
This theorem is referenced by:  reheibor  35993
  Copyright terms: Public domain W3C validator