![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnheibor | Structured version Visualization version GIF version |
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
rrnheibor.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
rrnheibor.2 | ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) |
rrnheibor.3 | ⊢ 𝑇 = (MetOpen‘𝑀) |
rrnheibor.4 | ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) |
Ref | Expression |
---|---|
rrnheibor | ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrnheibor.1 | . . . . . 6 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
2 | 1 | rrnmet 37789 | . . . . 5 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (Met‘𝑋)) |
3 | rrnheibor.2 | . . . . . 6 ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) | |
4 | metres2 24394 | . . . . . 6 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) | |
5 | 3, 4 | eqeltrid 2848 | . . . . 5 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
6 | 2, 5 | sylan 579 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
7 | 6 | biantrurd 532 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp))) |
8 | rrnheibor.3 | . . . 4 ⊢ 𝑇 = (MetOpen‘𝑀) | |
9 | 8 | heibor 37781 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))) |
10 | 7, 9 | bitrdi 287 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))) |
11 | 3 | eleq1i 2835 | . . . 4 ⊢ (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
12 | 1 | rrncms 37793 | . . . . . 6 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
14 | rrnheibor.4 | . . . . . 6 ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) | |
15 | 14 | cmetss 25369 | . . . . 5 ⊢ ((ℝn‘𝐼) ∈ (CMet‘𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
17 | 11, 16 | bitrid 283 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
18 | 1, 3 | rrntotbnd 37796 | . . . 4 ⊢ (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
20 | 17, 19 | anbi12d 631 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
21 | 10, 20 | bitrd 279 | 1 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 × cxp 5698 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Fincfn 9003 ℝcr 11183 Metcmet 21373 MetOpencmopn 21377 Clsdccld 23045 Compccmp 23415 CMetccmet 25307 TotBndctotbnd 37726 Bndcbnd 37727 ℝncrrn 37785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-ec 8765 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-gz 16977 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-topgen 17503 df-prds 17507 df-pws 17509 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lm 23258 df-haus 23344 df-cmp 23416 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-cfil 25308 df-cau 25309 df-cmet 25310 df-totbnd 37728 df-bnd 37739 df-rrn 37786 |
This theorem is referenced by: reheibor 37799 |
Copyright terms: Public domain | W3C validator |