| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnheibor | Structured version Visualization version GIF version | ||
| Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| rrnheibor.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
| rrnheibor.2 | ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) |
| rrnheibor.3 | ⊢ 𝑇 = (MetOpen‘𝑀) |
| rrnheibor.4 | ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) |
| Ref | Expression |
|---|---|
| rrnheibor | ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnheibor.1 | . . . . . 6 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
| 2 | 1 | rrnmet 37823 | . . . . 5 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (Met‘𝑋)) |
| 3 | rrnheibor.2 | . . . . . 6 ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) | |
| 4 | metres2 24251 | . . . . . 6 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) | |
| 5 | 3, 4 | eqeltrid 2832 | . . . . 5 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
| 6 | 2, 5 | sylan 580 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
| 7 | 6 | biantrurd 532 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp))) |
| 8 | rrnheibor.3 | . . . 4 ⊢ 𝑇 = (MetOpen‘𝑀) | |
| 9 | 8 | heibor 37815 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))) |
| 10 | 7, 9 | bitrdi 287 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))) |
| 11 | 3 | eleq1i 2819 | . . . 4 ⊢ (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
| 12 | 1 | rrncms 37827 | . . . . . 6 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
| 14 | rrnheibor.4 | . . . . . 6 ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) | |
| 15 | 14 | cmetss 25216 | . . . . 5 ⊢ ((ℝn‘𝐼) ∈ (CMet‘𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
| 16 | 13, 15 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
| 17 | 11, 16 | bitrid 283 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
| 18 | 1, 3 | rrntotbnd 37830 | . . . 4 ⊢ (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
| 20 | 17, 19 | anbi12d 632 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
| 21 | 10, 20 | bitrd 279 | 1 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 ℝcr 11067 Metcmet 21250 MetOpencmopn 21254 Clsdccld 22903 Compccmp 23273 CMetccmet 25154 TotBndctotbnd 37760 Bndcbnd 37761 ℝncrrn 37819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-gz 16901 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-topgen 17406 df-prds 17410 df-pws 17412 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lm 23116 df-haus 23202 df-cmp 23274 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-cfil 25155 df-cau 25156 df-cmet 25157 df-totbnd 37762 df-bnd 37773 df-rrn 37820 |
| This theorem is referenced by: reheibor 37833 |
| Copyright terms: Public domain | W3C validator |