![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnheibor | Structured version Visualization version GIF version |
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
rrnheibor.1 | β’ π = (β βm πΌ) |
rrnheibor.2 | β’ π = ((βnβπΌ) βΎ (π Γ π)) |
rrnheibor.3 | β’ π = (MetOpenβπ) |
rrnheibor.4 | β’ π = (MetOpenβ(βnβπΌ)) |
Ref | Expression |
---|---|
rrnheibor | β’ ((πΌ β Fin β§ π β π) β (π β Comp β (π β (Clsdβπ) β§ π β (Bndβπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrnheibor.1 | . . . . . 6 β’ π = (β βm πΌ) | |
2 | 1 | rrnmet 37001 | . . . . 5 β’ (πΌ β Fin β (βnβπΌ) β (Metβπ)) |
3 | rrnheibor.2 | . . . . . 6 β’ π = ((βnβπΌ) βΎ (π Γ π)) | |
4 | metres2 24090 | . . . . . 6 β’ (((βnβπΌ) β (Metβπ) β§ π β π) β ((βnβπΌ) βΎ (π Γ π)) β (Metβπ)) | |
5 | 3, 4 | eqeltrid 2836 | . . . . 5 β’ (((βnβπΌ) β (Metβπ) β§ π β π) β π β (Metβπ)) |
6 | 2, 5 | sylan 579 | . . . 4 β’ ((πΌ β Fin β§ π β π) β π β (Metβπ)) |
7 | 6 | biantrurd 532 | . . 3 β’ ((πΌ β Fin β§ π β π) β (π β Comp β (π β (Metβπ) β§ π β Comp))) |
8 | rrnheibor.3 | . . . 4 β’ π = (MetOpenβπ) | |
9 | 8 | heibor 36993 | . . 3 β’ ((π β (Metβπ) β§ π β Comp) β (π β (CMetβπ) β§ π β (TotBndβπ))) |
10 | 7, 9 | bitrdi 287 | . 2 β’ ((πΌ β Fin β§ π β π) β (π β Comp β (π β (CMetβπ) β§ π β (TotBndβπ)))) |
11 | 3 | eleq1i 2823 | . . . 4 β’ (π β (CMetβπ) β ((βnβπΌ) βΎ (π Γ π)) β (CMetβπ)) |
12 | 1 | rrncms 37005 | . . . . . 6 β’ (πΌ β Fin β (βnβπΌ) β (CMetβπ)) |
13 | 12 | adantr 480 | . . . . 5 β’ ((πΌ β Fin β§ π β π) β (βnβπΌ) β (CMetβπ)) |
14 | rrnheibor.4 | . . . . . 6 β’ π = (MetOpenβ(βnβπΌ)) | |
15 | 14 | cmetss 25065 | . . . . 5 β’ ((βnβπΌ) β (CMetβπ) β (((βnβπΌ) βΎ (π Γ π)) β (CMetβπ) β π β (Clsdβπ))) |
16 | 13, 15 | syl 17 | . . . 4 β’ ((πΌ β Fin β§ π β π) β (((βnβπΌ) βΎ (π Γ π)) β (CMetβπ) β π β (Clsdβπ))) |
17 | 11, 16 | bitrid 283 | . . 3 β’ ((πΌ β Fin β§ π β π) β (π β (CMetβπ) β π β (Clsdβπ))) |
18 | 1, 3 | rrntotbnd 37008 | . . . 4 β’ (πΌ β Fin β (π β (TotBndβπ) β π β (Bndβπ))) |
19 | 18 | adantr 480 | . . 3 β’ ((πΌ β Fin β§ π β π) β (π β (TotBndβπ) β π β (Bndβπ))) |
20 | 17, 19 | anbi12d 630 | . 2 β’ ((πΌ β Fin β§ π β π) β ((π β (CMetβπ) β§ π β (TotBndβπ)) β (π β (Clsdβπ) β§ π β (Bndβπ)))) |
21 | 10, 20 | bitrd 279 | 1 β’ ((πΌ β Fin β§ π β π) β (π β Comp β (π β (Clsdβπ) β§ π β (Bndβπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 β wss 3948 Γ cxp 5674 βΎ cres 5678 βcfv 6543 (class class class)co 7412 βm cmap 8823 Fincfn 8942 βcr 11112 Metcmet 21131 MetOpencmopn 21135 Clsdccld 22741 Compccmp 23111 CMetccmet 25003 TotBndctotbnd 36938 Bndcbnd 36939 βncrrn 36997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-inf2 9639 ax-cc 10433 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-omul 8474 df-er 8706 df-ec 8708 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-card 9937 df-acn 9940 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-limsup 15420 df-clim 15437 df-rlim 15438 df-sum 15638 df-gz 16868 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-topgen 17394 df-prds 17398 df-pws 17400 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-lm 22954 df-haus 23040 df-cmp 23112 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-cfil 25004 df-cau 25005 df-cmet 25006 df-totbnd 36940 df-bnd 36951 df-rrn 36998 |
This theorem is referenced by: reheibor 37011 |
Copyright terms: Public domain | W3C validator |