Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnheibor Structured version   Visualization version   GIF version

Theorem rrnheibor 35274
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
rrnheibor.1 𝑋 = (ℝ ↑m 𝐼)
rrnheibor.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
rrnheibor.3 𝑇 = (MetOpen‘𝑀)
rrnheibor.4 𝑈 = (MetOpen‘(ℝn𝐼))
Assertion
Ref Expression
rrnheibor ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem rrnheibor
StepHypRef Expression
1 rrnheibor.1 . . . . . 6 𝑋 = (ℝ ↑m 𝐼)
21rrnmet 35266 . . . . 5 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
3 rrnheibor.2 . . . . . 6 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
4 metres2 22974 . . . . . 6 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
53, 4eqeltrid 2897 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
62, 5sylan 583 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
76biantrurd 536 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp)))
8 rrnheibor.3 . . . 4 𝑇 = (MetOpen‘𝑀)
98heibor 35258 . . 3 ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))
107, 9syl6bb 290 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))))
113eleq1i 2883 . . . 4 (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
121rrncms 35270 . . . . . 6 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (CMet‘𝑋))
1312adantr 484 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (ℝn𝐼) ∈ (CMet‘𝑋))
14 rrnheibor.4 . . . . . 6 𝑈 = (MetOpen‘(ℝn𝐼))
1514cmetss 23924 . . . . 5 ((ℝn𝐼) ∈ (CMet‘𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1613, 15syl 17 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1711, 16syl5bb 286 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
181, 3rrntotbnd 35273 . . . 4 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
1918adantr 484 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
2017, 19anbi12d 633 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
2110, 20bitrd 282 1 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wss 3884   × cxp 5521  cres 5525  cfv 6328  (class class class)co 7139  m cmap 8393  Fincfn 8496  cr 10529  Metcmet 20081  MetOpencmopn 20085  Clsdccld 21625  Compccmp 21995  CMetccmet 23862  TotBndctotbnd 35203  Bndcbnd 35204  ncrrn 35262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cc 9850  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-ec 8278  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-gz 16260  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-topgen 16713  df-prds 16717  df-pws 16719  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lm 21838  df-haus 21924  df-cmp 21996  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-cfil 23863  df-cau 23864  df-cmet 23865  df-totbnd 35205  df-bnd 35216  df-rrn 35263
This theorem is referenced by:  reheibor  35276
  Copyright terms: Public domain W3C validator