![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnheibor | Structured version Visualization version GIF version |
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
rrnheibor.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
rrnheibor.2 | ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) |
rrnheibor.3 | ⊢ 𝑇 = (MetOpen‘𝑀) |
rrnheibor.4 | ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) |
Ref | Expression |
---|---|
rrnheibor | ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrnheibor.1 | . . . . . 6 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
2 | 1 | rrnmet 37816 | . . . . 5 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (Met‘𝑋)) |
3 | rrnheibor.2 | . . . . . 6 ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) | |
4 | metres2 24389 | . . . . . 6 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) | |
5 | 3, 4 | eqeltrid 2843 | . . . . 5 ⊢ (((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
6 | 2, 5 | sylan 580 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑀 ∈ (Met‘𝑌)) |
7 | 6 | biantrurd 532 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp))) |
8 | rrnheibor.3 | . . . 4 ⊢ 𝑇 = (MetOpen‘𝑀) | |
9 | 8 | heibor 37808 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))) |
10 | 7, 9 | bitrdi 287 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))) |
11 | 3 | eleq1i 2830 | . . . 4 ⊢ (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
12 | 1 | rrncms 37820 | . . . . . 6 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (ℝn‘𝐼) ∈ (CMet‘𝑋)) |
14 | rrnheibor.4 | . . . . . 6 ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) | |
15 | 14 | cmetss 25364 | . . . . 5 ⊢ ((ℝn‘𝐼) ∈ (CMet‘𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
16 | 13, 15 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
17 | 11, 16 | bitrid 283 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈))) |
18 | 1, 3 | rrntotbnd 37823 | . . . 4 ⊢ (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) |
20 | 17, 19 | anbi12d 632 | . 2 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
21 | 10, 20 | bitrd 279 | 1 ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 × cxp 5687 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Fincfn 8984 ℝcr 11152 Metcmet 21368 MetOpencmopn 21372 Clsdccld 23040 Compccmp 23410 CMetccmet 25302 TotBndctotbnd 37753 Bndcbnd 37754 ℝncrrn 37812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-ec 8746 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-gz 16964 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-topgen 17490 df-prds 17494 df-pws 17496 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lm 23253 df-haus 23339 df-cmp 23411 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-cfil 25303 df-cau 25304 df-cmet 25305 df-totbnd 37755 df-bnd 37766 df-rrn 37813 |
This theorem is referenced by: reheibor 37826 |
Copyright terms: Public domain | W3C validator |