Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul2lt0rgt0 | Structured version Visualization version GIF version |
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
Ref | Expression |
---|---|
mul2lt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
mul2lt0.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
mul2lt0.3 | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
Ref | Expression |
---|---|
mul2lt0rgt0 | ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul2lt0.3 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → (𝐴 · 𝐵) < 0) |
3 | mul2lt0.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ) |
5 | 4 | recnd 10712 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℂ) |
6 | 5 | mul02d 10881 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → (0 · 𝐵) = 0) |
7 | 2, 6 | breqtrrd 5063 | . 2 ⊢ ((𝜑 ∧ 0 < 𝐵) → (𝐴 · 𝐵) < (0 · 𝐵)) |
8 | mul2lt0.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
9 | 8 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ ℝ) |
10 | 0red 10687 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → 0 ∈ ℝ) | |
11 | simpr 488 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐵) | |
12 | 4, 11 | elrpd 12474 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+) |
13 | 9, 10, 12 | ltmul1d 12518 | . 2 ⊢ ((𝜑 ∧ 0 < 𝐵) → (𝐴 < 0 ↔ (𝐴 · 𝐵) < (0 · 𝐵))) |
14 | 7, 13 | mpbird 260 | 1 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 class class class wbr 5035 (class class class)co 7155 ℝcr 10579 0cc0 10580 · cmul 10585 < clt 10718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-ltxr 10723 df-sub 10915 df-neg 10916 df-rp 12436 |
This theorem is referenced by: mul2lt0lgt0 12540 sgnmul 32032 signsply0 32053 |
Copyright terms: Public domain | W3C validator |