| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul2lt0rgt0 | Structured version Visualization version GIF version | ||
| Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| Ref | Expression |
|---|---|
| mul2lt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mul2lt0.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mul2lt0.3 | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
| Ref | Expression |
|---|---|
| mul2lt0rgt0 | ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.3 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → (𝐴 · 𝐵) < 0) |
| 3 | mul2lt0.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ) |
| 5 | 4 | recnd 11140 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℂ) |
| 6 | 5 | mul02d 11311 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → (0 · 𝐵) = 0) |
| 7 | 2, 6 | breqtrrd 5119 | . 2 ⊢ ((𝜑 ∧ 0 < 𝐵) → (𝐴 · 𝐵) < (0 · 𝐵)) |
| 8 | mul2lt0.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 ∈ ℝ) |
| 10 | 0red 11115 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → 0 ∈ ℝ) | |
| 11 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 0 < 𝐵) → 0 < 𝐵) | |
| 12 | 4, 11 | elrpd 12931 | . . 3 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+) |
| 13 | 9, 10, 12 | ltmul1d 12975 | . 2 ⊢ ((𝜑 ∧ 0 < 𝐵) → (𝐴 < 0 ↔ (𝐴 · 𝐵) < (0 · 𝐵))) |
| 14 | 7, 13 | mpbird 257 | 1 ⊢ ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 0cc0 11006 · cmul 11011 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 df-rp 12891 |
| This theorem is referenced by: mul2lt0lgt0 12997 sgnmul 32816 signsply0 34562 |
| Copyright terms: Public domain | W3C validator |