Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulclpr | Structured version Visualization version GIF version |
Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulclpr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mp 10724 | . 2 ⊢ ·P = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦 ·Q 𝑧)}) | |
2 | mulclnq 10687 | . 2 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦 ·Q 𝑧) ∈ Q) | |
3 | ltmnq 10712 | . 2 ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ ·Q 𝑓) <Q (ℎ ·Q 𝑔))) | |
4 | mulcomnq 10693 | . 2 ⊢ (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥) | |
5 | mulclprlem 10759 | . 2 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 ·Q ℎ) → 𝑥 ∈ (𝐴 ·P 𝐵))) | |
6 | 1, 2, 3, 4, 5 | genpcl 10748 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) ∈ P) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7268 ·Q cmq 10596 Pcnp 10599 ·P cmp 10602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-omul 8286 df-er 8472 df-ni 10612 df-mi 10614 df-lti 10615 df-mpq 10649 df-ltpq 10650 df-enq 10651 df-nq 10652 df-erq 10653 df-mq 10655 df-1nq 10656 df-rq 10657 df-ltnq 10658 df-np 10721 df-mp 10724 |
This theorem is referenced by: mulasspr 10764 distrlem1pr 10765 distrlem4pr 10766 distrlem5pr 10767 mulcmpblnr 10811 mulclsr 10824 mulasssr 10830 distrsr 10831 m1m1sr 10833 1idsr 10838 00sr 10839 recexsrlem 10843 mulgt0sr 10845 |
Copyright terms: Public domain | W3C validator |