MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclpr Structured version   Visualization version   GIF version

Theorem mulclpr 10911
Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclpr ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)

Proof of Theorem mulclpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mp 10875 . 2 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 ·Q 𝑧)})
2 mulclnq 10838 . 2 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
3 ltmnq 10863 . 2 (Q → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
4 mulcomnq 10844 . 2 (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥)
5 mulclprlem 10910 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
61, 2, 3, 4, 5genpcl 10899 1 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  (class class class)co 7346   ·Q cmq 10747  Pcnp 10750   ·P cmp 10753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ni 10763  df-mi 10765  df-lti 10766  df-mpq 10800  df-ltpq 10801  df-enq 10802  df-nq 10803  df-erq 10804  df-mq 10806  df-1nq 10807  df-rq 10808  df-ltnq 10809  df-np 10872  df-mp 10875
This theorem is referenced by:  mulasspr  10915  distrlem1pr  10916  distrlem4pr  10917  distrlem5pr  10918  mulcmpblnr  10962  mulclsr  10975  mulasssr  10981  distrsr  10982  m1m1sr  10984  1idsr  10989  00sr  10990  recexsrlem  10994  mulgt0sr  10996
  Copyright terms: Public domain W3C validator