MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclpr Structured version   Visualization version   GIF version

Theorem mulclpr 10157
Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclpr ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)

Proof of Theorem mulclpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mp 10121 . 2 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 ·Q 𝑧)})
2 mulclnq 10084 . 2 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
3 ltmnq 10109 . 2 (Q → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
4 mulcomnq 10090 . 2 (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥)
5 mulclprlem 10156 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
61, 2, 3, 4, 5genpcl 10145 1 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2166  (class class class)co 6905   ·Q cmq 9993  Pcnp 9996   ·P cmp 9999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-omul 7831  df-er 8009  df-ni 10009  df-mi 10011  df-lti 10012  df-mpq 10046  df-ltpq 10047  df-enq 10048  df-nq 10049  df-erq 10050  df-mq 10052  df-1nq 10053  df-rq 10054  df-ltnq 10055  df-np 10118  df-mp 10121
This theorem is referenced by:  mulasspr  10161  distrlem1pr  10162  distrlem4pr  10163  distrlem5pr  10164  mulcmpblnr  10208  mulclsr  10221  mulasssr  10227  distrsr  10228  m1m1sr  10230  1idsr  10235  00sr  10236  recexsrlem  10240  mulgt0sr  10242
  Copyright terms: Public domain W3C validator