Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclpr Structured version   Visualization version   GIF version

Theorem mulclpr 10436
 Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclpr ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)

Proof of Theorem mulclpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mp 10400 . 2 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 ·Q 𝑧)})
2 mulclnq 10363 . 2 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
3 ltmnq 10388 . 2 (Q → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
4 mulcomnq 10369 . 2 (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥)
5 mulclprlem 10435 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
61, 2, 3, 4, 5genpcl 10424 1 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2115  (class class class)co 7146   ·Q cmq 10272  Pcnp 10275   ·P cmp 10278 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-omul 8099  df-er 8281  df-ni 10288  df-mi 10290  df-lti 10291  df-mpq 10325  df-ltpq 10326  df-enq 10327  df-nq 10328  df-erq 10329  df-mq 10331  df-1nq 10332  df-rq 10333  df-ltnq 10334  df-np 10397  df-mp 10400 This theorem is referenced by:  mulasspr  10440  distrlem1pr  10441  distrlem4pr  10442  distrlem5pr  10443  mulcmpblnr  10487  mulclsr  10500  mulasssr  10506  distrsr  10507  m1m1sr  10509  1idsr  10514  00sr  10515  recexsrlem  10519  mulgt0sr  10521
 Copyright terms: Public domain W3C validator