MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfld1OLD Structured version   Visualization version   GIF version

Theorem cnfld1OLD 21306
Description: Obsolete version of cnfld1 21305 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnfld1OLD 1 = (1r‘ℂfld)

Proof of Theorem cnfld1OLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-1cn 11126 . . . 4 1 ∈ ℂ
2 mullid 11173 . . . . . 6 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
3 mulrid 11172 . . . . . 6 (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥)
42, 3jca 511 . . . . 5 (𝑥 ∈ ℂ → ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥))
54rgen 3046 . . . 4 𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)
61, 5pm3.2i 470 . . 3 (1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥))
7 cnring 21302 . . . 4 fld ∈ Ring
8 cnfldbas 21268 . . . . 5 ℂ = (Base‘ℂfld)
9 cnfldmul 21272 . . . . 5 · = (.r‘ℂfld)
10 eqid 2729 . . . . 5 (1r‘ℂfld) = (1r‘ℂfld)
118, 9, 10isringid 20180 . . . 4 (ℂfld ∈ Ring → ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1))
127, 11ax-mp 5 . . 3 ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((1 · 𝑥) = 𝑥 ∧ (𝑥 · 1) = 𝑥)) ↔ (1r‘ℂfld) = 1)
136, 12mpbi 230 . 2 (1r‘ℂfld) = 1
1413eqcomi 2738 1 1 = (1r‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   · cmul 11073  1rcur 20090  Ringcrg 20142  fldccnfld 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-cmn 19712  df-mgp 20050  df-ur 20091  df-ring 20144  df-cring 20145  df-cnfld 21265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator