Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mavmumamul1 | Structured version Visualization version GIF version |
Description: The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.) |
Ref | Expression |
---|---|
mavmumamul1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mavmumamul1.m | ⊢ × = (𝑅 maMul 〈𝑁, 𝑁, {∅}〉) |
mavmumamul1.t | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
mavmumamul1.b | ⊢ 𝐵 = (Base‘𝑅) |
mavmumamul1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mavmumamul1.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mavmumamul1.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
mavmumamul1.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
mavmumamul1.z | ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × {∅}))) |
Ref | Expression |
---|---|
mavmumamul1 | ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅) → ∀𝑖 ∈ 𝑁 ((𝑋 · 𝑌)‘𝑖) = (𝑖(𝑋 × 𝑍)∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mavmumamul1.m | . 2 ⊢ × = (𝑅 maMul 〈𝑁, 𝑁, {∅}〉) | |
2 | mavmumamul1.t | . 2 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
3 | mavmumamul1.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
4 | mavmumamul1.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | mavmumamul1.n | . 2 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
6 | mavmumamul1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) | |
7 | mavmumamul1.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
8 | 7, 3 | matbas2 21570 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
9 | 5, 4, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
10 | 6, 9 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
11 | mavmumamul1.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) | |
12 | mavmumamul1.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × {∅}))) | |
13 | 1, 2, 3, 4, 5, 5, 10, 11, 12 | mvmumamul1 21703 | 1 ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅) → ∀𝑖 ∈ 𝑁 ((𝑋 · 𝑌)‘𝑖) = (𝑖(𝑋 × 𝑍)∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∅c0 4256 {csn 4561 〈cop 4567 〈cotp 4569 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Fincfn 8733 Basecbs 16912 Ringcrg 19783 maMul cmmul 21532 Mat cmat 21554 maVecMul cmvmul 21689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-prds 17158 df-pws 17160 df-sra 20434 df-rgmod 20435 df-dsmm 20939 df-frlm 20954 df-mamu 21533 df-mat 21555 df-mvmul 21690 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |