Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mavmumamul1 | Structured version Visualization version GIF version |
Description: The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.) |
Ref | Expression |
---|---|
mavmumamul1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mavmumamul1.m | ⊢ × = (𝑅 maMul 〈𝑁, 𝑁, {∅}〉) |
mavmumamul1.t | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
mavmumamul1.b | ⊢ 𝐵 = (Base‘𝑅) |
mavmumamul1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mavmumamul1.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mavmumamul1.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
mavmumamul1.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
mavmumamul1.z | ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × {∅}))) |
Ref | Expression |
---|---|
mavmumamul1 | ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅) → ∀𝑖 ∈ 𝑁 ((𝑋 · 𝑌)‘𝑖) = (𝑖(𝑋 × 𝑍)∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mavmumamul1.m | . 2 ⊢ × = (𝑅 maMul 〈𝑁, 𝑁, {∅}〉) | |
2 | mavmumamul1.t | . 2 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
3 | mavmumamul1.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
4 | mavmumamul1.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | mavmumamul1.n | . 2 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
6 | mavmumamul1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) | |
7 | mavmumamul1.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
8 | 7, 3 | matbas2 21165 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
9 | 5, 4, 8 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
10 | 6, 9 | eleqtrrd 2836 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
11 | mavmumamul1.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) | |
12 | mavmumamul1.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × {∅}))) | |
13 | 1, 2, 3, 4, 5, 5, 10, 11, 12 | mvmumamul1 21298 | 1 ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑌‘𝑗) = (𝑗𝑍∅) → ∀𝑖 ∈ 𝑁 ((𝑋 · 𝑌)‘𝑖) = (𝑖(𝑋 × 𝑍)∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 ∀wral 3053 ∅c0 4209 {csn 4513 〈cop 4519 〈cotp 4521 × cxp 5517 ‘cfv 6333 (class class class)co 7164 ↑m cmap 8430 Fincfn 8548 Basecbs 16579 Ringcrg 19409 maMul cmmul 21129 Mat cmat 21151 maVecMul cmvmul 21284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-ot 4522 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-supp 7850 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-map 8432 df-ixp 8501 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-fsupp 8900 df-sup 8972 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-dec 12173 df-uz 12318 df-fz 12975 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-mulr 16675 df-sca 16677 df-vsca 16678 df-ip 16679 df-tset 16680 df-ple 16681 df-ds 16683 df-hom 16685 df-cco 16686 df-0g 16811 df-prds 16817 df-pws 16819 df-sra 20056 df-rgmod 20057 df-dsmm 20541 df-frlm 20556 df-mamu 21130 df-mat 21152 df-mvmul 21285 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |