MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmumamul1 Structured version   Visualization version   GIF version

Theorem mavmumamul1 22562
Description: The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
mavmumamul1.a 𝐴 = (𝑁 Mat 𝑅)
mavmumamul1.m × = (𝑅 maMul ⟨𝑁, 𝑁, {∅}⟩)
mavmumamul1.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
mavmumamul1.b 𝐵 = (Base‘𝑅)
mavmumamul1.r (𝜑𝑅 ∈ Ring)
mavmumamul1.n (𝜑𝑁 ∈ Fin)
mavmumamul1.x (𝜑𝑋 ∈ (Base‘𝐴))
mavmumamul1.y (𝜑𝑌 ∈ (𝐵m 𝑁))
mavmumamul1.z (𝜑𝑍 ∈ (𝐵m (𝑁 × {∅})))
Assertion
Ref Expression
mavmumamul1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑁 ((𝑋 · 𝑌)‘𝑖) = (𝑖(𝑋 × 𝑍)∅)))
Distinct variable groups:   𝑖,𝑗,𝑁   𝑖,𝑌,𝑗   𝑖,𝑍,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑅(𝑖,𝑗)   · (𝑖,𝑗)   × (𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mavmumamul1
StepHypRef Expression
1 mavmumamul1.m . 2 × = (𝑅 maMul ⟨𝑁, 𝑁, {∅}⟩)
2 mavmumamul1.t . 2 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 mavmumamul1.b . 2 𝐵 = (Base‘𝑅)
4 mavmumamul1.r . 2 (𝜑𝑅 ∈ Ring)
5 mavmumamul1.n . 2 (𝜑𝑁 ∈ Fin)
6 mavmumamul1.x . . 3 (𝜑𝑋 ∈ (Base‘𝐴))
7 mavmumamul1.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
87, 3matbas2 22428 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
95, 4, 8syl2anc 584 . . 3 (𝜑 → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
106, 9eleqtrrd 2843 . 2 (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑁)))
11 mavmumamul1.y . 2 (𝜑𝑌 ∈ (𝐵m 𝑁))
12 mavmumamul1.z . 2 (𝜑𝑍 ∈ (𝐵m (𝑁 × {∅})))
131, 2, 3, 4, 5, 5, 10, 11, 12mvmumamul1 22561 1 (𝜑 → (∀𝑗𝑁 (𝑌𝑗) = (𝑗𝑍∅) → ∀𝑖𝑁 ((𝑋 · 𝑌)‘𝑖) = (𝑖(𝑋 × 𝑍)∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3060  c0 4332  {csn 4625  cop 4631  cotp 4633   × cxp 5682  cfv 6560  (class class class)co 7432  m cmap 8867  Fincfn 8986  Basecbs 17248  Ringcrg 20231   maMul cmmul 22395   Mat cmat 22412   maVecMul cmvmul 22547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-prds 17493  df-pws 17495  df-sra 21173  df-rgmod 21174  df-dsmm 21753  df-frlm 21768  df-mamu 22396  df-mat 22413  df-mvmul 22548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator