MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddoa Structured version   Visualization version   GIF version

Theorem naddoa 8617
Description: Natural addition of a natural is the same as regular addition. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
naddoa ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))

Proof of Theorem naddoa
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7354 . . . . 5 (𝑦 = ∅ → (𝐴 +no 𝑦) = (𝐴 +no ∅))
2 oveq2 7354 . . . . 5 (𝑦 = ∅ → (𝐴 +o 𝑦) = (𝐴 +o ∅))
31, 2eqeq12d 2747 . . . 4 (𝑦 = ∅ → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no ∅) = (𝐴 +o ∅)))
43imbi2d 340 . . 3 (𝑦 = ∅ → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o ∅))))
5 oveq2 7354 . . . . 5 (𝑦 = 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no 𝑥))
6 oveq2 7354 . . . . 5 (𝑦 = 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o 𝑥))
75, 6eqeq12d 2747 . . . 4 (𝑦 = 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)))
87imbi2d 340 . . 3 (𝑦 = 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥))))
9 oveq2 7354 . . . . 5 (𝑦 = suc 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no suc 𝑥))
10 oveq2 7354 . . . . 5 (𝑦 = suc 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o suc 𝑥))
119, 10eqeq12d 2747 . . . 4 (𝑦 = suc 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥)))
1211imbi2d 340 . . 3 (𝑦 = suc 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
13 oveq2 7354 . . . . 5 (𝑦 = 𝐵 → (𝐴 +no 𝑦) = (𝐴 +no 𝐵))
14 oveq2 7354 . . . . 5 (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵))
1513, 14eqeq12d 2747 . . . 4 (𝑦 = 𝐵 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝐵) = (𝐴 +o 𝐵)))
1615imbi2d 340 . . 3 (𝑦 = 𝐵 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))))
17 naddrid 8598 . . . 4 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
18 oa0 8431 . . . 4 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
1917, 18eqtr4d 2769 . . 3 (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o ∅))
20 suceq 6374 . . . . . . 7 ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥))
21203ad2ant3 1135 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥))
22 nnon 7802 . . . . . . . . 9 (𝑥 ∈ ω → 𝑥 ∈ On)
23 naddsuc2 8616 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
2422, 23sylan2 593 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
2524ancoms 458 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
26253adant3 1132 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
27 onasuc 8443 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
2827ancoms 458 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
29283adant3 1132 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3021, 26, 293eqtr4d 2776 . . . . 5 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))
31303exp 1119 . . . 4 (𝑥 ∈ ω → (𝐴 ∈ On → ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
3231a2d 29 . . 3 (𝑥 ∈ ω → ((𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
334, 8, 12, 16, 19, 32finds 7826 . 2 (𝐵 ∈ ω → (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵)))
3433impcom 407 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  c0 4280  Oncon0 6306  suc csuc 6308  (class class class)co 7346  ωcom 7796   +o coa 8382   +no cnadd 8580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389  df-nadd 8581
This theorem is referenced by:  omnaddcl  8618
  Copyright terms: Public domain W3C validator