Step | Hyp | Ref
| Expression |
1 | | oveq2 7451 |
. . . . 5
⊢ (𝑦 = ∅ → (𝐴 +no 𝑦) = (𝐴 +no ∅)) |
2 | | oveq2 7451 |
. . . . 5
⊢ (𝑦 = ∅ → (𝐴 +o 𝑦) = (𝐴 +o ∅)) |
3 | 1, 2 | eqeq12d 2756 |
. . . 4
⊢ (𝑦 = ∅ → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no ∅) = (𝐴 +o ∅))) |
4 | 3 | imbi2d 340 |
. . 3
⊢ (𝑦 = ∅ → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o ∅)))) |
5 | | oveq2 7451 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no 𝑥)) |
6 | | oveq2 7451 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o 𝑥)) |
7 | 5, 6 | eqeq12d 2756 |
. . . 4
⊢ (𝑦 = 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝑥) = (𝐴 +o 𝑥))) |
8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑦 = 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥)))) |
9 | | oveq2 7451 |
. . . . 5
⊢ (𝑦 = suc 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no suc 𝑥)) |
10 | | oveq2 7451 |
. . . . 5
⊢ (𝑦 = suc 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o suc 𝑥)) |
11 | 9, 10 | eqeq12d 2756 |
. . . 4
⊢ (𝑦 = suc 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑦 = suc 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥)))) |
13 | | oveq2 7451 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝐴 +no 𝑦) = (𝐴 +no 𝐵)) |
14 | | oveq2 7451 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵)) |
15 | 13, 14 | eqeq12d 2756 |
. . . 4
⊢ (𝑦 = 𝐵 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝐵) = (𝐴 +o 𝐵))) |
16 | 15 | imbi2d 340 |
. . 3
⊢ (𝑦 = 𝐵 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵)))) |
17 | | naddrid 8733 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴) |
18 | | oa0 8566 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) |
19 | 17, 18 | eqtr4d 2783 |
. . 3
⊢ (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o
∅)) |
20 | | suceq 6456 |
. . . . . . 7
⊢ ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥)) |
21 | 20 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥)) |
22 | | nnon 7903 |
. . . . . . . . 9
⊢ (𝑥 ∈ ω → 𝑥 ∈ On) |
23 | | naddsuc2 8751 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥)) |
24 | 22, 23 | sylan2 592 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥)) |
25 | 24 | ancoms 458 |
. . . . . . 7
⊢ ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥)) |
26 | 25 | 3adant3 1132 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥)) |
27 | | onasuc 8578 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥)) |
28 | 27 | ancoms 458 |
. . . . . . 7
⊢ ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥)) |
29 | 28 | 3adant3 1132 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥)) |
30 | 21, 26, 29 | 3eqtr4d 2790 |
. . . . 5
⊢ ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥)) |
31 | 30 | 3exp 1119 |
. . . 4
⊢ (𝑥 ∈ ω → (𝐴 ∈ On → ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥)))) |
32 | 31 | a2d 29 |
. . 3
⊢ (𝑥 ∈ ω → ((𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥)))) |
33 | 4, 8, 12, 16, 19, 32 | finds 7930 |
. 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))) |
34 | 33 | impcom 407 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +no 𝐵) = (𝐴 +o 𝐵)) |