MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddoa Structured version   Visualization version   GIF version

Theorem naddoa 8620
Description: Natural addition of a natural is the same as regular addition. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
naddoa ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))

Proof of Theorem naddoa
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . 5 (𝑦 = ∅ → (𝐴 +no 𝑦) = (𝐴 +no ∅))
2 oveq2 7357 . . . . 5 (𝑦 = ∅ → (𝐴 +o 𝑦) = (𝐴 +o ∅))
31, 2eqeq12d 2745 . . . 4 (𝑦 = ∅ → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no ∅) = (𝐴 +o ∅)))
43imbi2d 340 . . 3 (𝑦 = ∅ → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o ∅))))
5 oveq2 7357 . . . . 5 (𝑦 = 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no 𝑥))
6 oveq2 7357 . . . . 5 (𝑦 = 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o 𝑥))
75, 6eqeq12d 2745 . . . 4 (𝑦 = 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)))
87imbi2d 340 . . 3 (𝑦 = 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥))))
9 oveq2 7357 . . . . 5 (𝑦 = suc 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no suc 𝑥))
10 oveq2 7357 . . . . 5 (𝑦 = suc 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o suc 𝑥))
119, 10eqeq12d 2745 . . . 4 (𝑦 = suc 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥)))
1211imbi2d 340 . . 3 (𝑦 = suc 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
13 oveq2 7357 . . . . 5 (𝑦 = 𝐵 → (𝐴 +no 𝑦) = (𝐴 +no 𝐵))
14 oveq2 7357 . . . . 5 (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵))
1513, 14eqeq12d 2745 . . . 4 (𝑦 = 𝐵 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝐵) = (𝐴 +o 𝐵)))
1615imbi2d 340 . . 3 (𝑦 = 𝐵 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))))
17 naddrid 8601 . . . 4 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
18 oa0 8434 . . . 4 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
1917, 18eqtr4d 2767 . . 3 (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o ∅))
20 suceq 6375 . . . . . . 7 ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥))
21203ad2ant3 1135 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥))
22 nnon 7805 . . . . . . . . 9 (𝑥 ∈ ω → 𝑥 ∈ On)
23 naddsuc2 8619 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
2422, 23sylan2 593 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
2524ancoms 458 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
26253adant3 1132 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
27 onasuc 8446 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
2827ancoms 458 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
29283adant3 1132 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3021, 26, 293eqtr4d 2774 . . . . 5 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))
31303exp 1119 . . . 4 (𝑥 ∈ ω → (𝐴 ∈ On → ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
3231a2d 29 . . 3 (𝑥 ∈ ω → ((𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
334, 8, 12, 16, 19, 32finds 7829 . 2 (𝐵 ∈ ω → (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵)))
3433impcom 407 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  c0 4284  Oncon0 6307  suc csuc 6309  (class class class)co 7349  ωcom 7799   +o coa 8385   +no cnadd 8583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392  df-nadd 8584
This theorem is referenced by:  omnaddcl  8621
  Copyright terms: Public domain W3C validator