MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddoa Structured version   Visualization version   GIF version

Theorem naddoa 8712
Description: Natural addition of a natural is the same as regular addition. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
naddoa ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))

Proof of Theorem naddoa
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7411 . . . . 5 (𝑦 = ∅ → (𝐴 +no 𝑦) = (𝐴 +no ∅))
2 oveq2 7411 . . . . 5 (𝑦 = ∅ → (𝐴 +o 𝑦) = (𝐴 +o ∅))
31, 2eqeq12d 2751 . . . 4 (𝑦 = ∅ → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no ∅) = (𝐴 +o ∅)))
43imbi2d 340 . . 3 (𝑦 = ∅ → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o ∅))))
5 oveq2 7411 . . . . 5 (𝑦 = 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no 𝑥))
6 oveq2 7411 . . . . 5 (𝑦 = 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o 𝑥))
75, 6eqeq12d 2751 . . . 4 (𝑦 = 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)))
87imbi2d 340 . . 3 (𝑦 = 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥))))
9 oveq2 7411 . . . . 5 (𝑦 = suc 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no suc 𝑥))
10 oveq2 7411 . . . . 5 (𝑦 = suc 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o suc 𝑥))
119, 10eqeq12d 2751 . . . 4 (𝑦 = suc 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥)))
1211imbi2d 340 . . 3 (𝑦 = suc 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
13 oveq2 7411 . . . . 5 (𝑦 = 𝐵 → (𝐴 +no 𝑦) = (𝐴 +no 𝐵))
14 oveq2 7411 . . . . 5 (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵))
1513, 14eqeq12d 2751 . . . 4 (𝑦 = 𝐵 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝐵) = (𝐴 +o 𝐵)))
1615imbi2d 340 . . 3 (𝑦 = 𝐵 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))))
17 naddrid 8693 . . . 4 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
18 oa0 8526 . . . 4 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
1917, 18eqtr4d 2773 . . 3 (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o ∅))
20 suceq 6419 . . . . . . 7 ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥))
21203ad2ant3 1135 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥))
22 nnon 7865 . . . . . . . . 9 (𝑥 ∈ ω → 𝑥 ∈ On)
23 naddsuc2 8711 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
2422, 23sylan2 593 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
2524ancoms 458 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
26253adant3 1132 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
27 onasuc 8538 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
2827ancoms 458 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
29283adant3 1132 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3021, 26, 293eqtr4d 2780 . . . . 5 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))
31303exp 1119 . . . 4 (𝑥 ∈ ω → (𝐴 ∈ On → ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
3231a2d 29 . . 3 (𝑥 ∈ ω → ((𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
334, 8, 12, 16, 19, 32finds 7890 . 2 (𝐵 ∈ ω → (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵)))
3433impcom 407 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  c0 4308  Oncon0 6352  suc csuc 6354  (class class class)co 7403  ωcom 7859   +o coa 8475   +no cnadd 8675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-oadd 8482  df-nadd 8676
This theorem is referenced by:  omnaddcl  8713
  Copyright terms: Public domain W3C validator