MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddoa Structured version   Visualization version   GIF version

Theorem naddoa 8643
Description: Natural addition of a natural is the same as regular addition. (Contributed by Scott Fenton, 20-Aug-2025.)
Assertion
Ref Expression
naddoa ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))

Proof of Theorem naddoa
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . 5 (𝑦 = ∅ → (𝐴 +no 𝑦) = (𝐴 +no ∅))
2 oveq2 7377 . . . . 5 (𝑦 = ∅ → (𝐴 +o 𝑦) = (𝐴 +o ∅))
31, 2eqeq12d 2745 . . . 4 (𝑦 = ∅ → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no ∅) = (𝐴 +o ∅)))
43imbi2d 340 . . 3 (𝑦 = ∅ → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o ∅))))
5 oveq2 7377 . . . . 5 (𝑦 = 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no 𝑥))
6 oveq2 7377 . . . . 5 (𝑦 = 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o 𝑥))
75, 6eqeq12d 2745 . . . 4 (𝑦 = 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)))
87imbi2d 340 . . 3 (𝑦 = 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥))))
9 oveq2 7377 . . . . 5 (𝑦 = suc 𝑥 → (𝐴 +no 𝑦) = (𝐴 +no suc 𝑥))
10 oveq2 7377 . . . . 5 (𝑦 = suc 𝑥 → (𝐴 +o 𝑦) = (𝐴 +o suc 𝑥))
119, 10eqeq12d 2745 . . . 4 (𝑦 = suc 𝑥 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥)))
1211imbi2d 340 . . 3 (𝑦 = suc 𝑥 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
13 oveq2 7377 . . . . 5 (𝑦 = 𝐵 → (𝐴 +no 𝑦) = (𝐴 +no 𝐵))
14 oveq2 7377 . . . . 5 (𝑦 = 𝐵 → (𝐴 +o 𝑦) = (𝐴 +o 𝐵))
1513, 14eqeq12d 2745 . . . 4 (𝑦 = 𝐵 → ((𝐴 +no 𝑦) = (𝐴 +o 𝑦) ↔ (𝐴 +no 𝐵) = (𝐴 +o 𝐵)))
1615imbi2d 340 . . 3 (𝑦 = 𝐵 → ((𝐴 ∈ On → (𝐴 +no 𝑦) = (𝐴 +o 𝑦)) ↔ (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))))
17 naddrid 8624 . . . 4 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
18 oa0 8457 . . . 4 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
1917, 18eqtr4d 2767 . . 3 (𝐴 ∈ On → (𝐴 +no ∅) = (𝐴 +o ∅))
20 suceq 6388 . . . . . . 7 ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥))
21203ad2ant3 1135 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → suc (𝐴 +no 𝑥) = suc (𝐴 +o 𝑥))
22 nnon 7828 . . . . . . . . 9 (𝑥 ∈ ω → 𝑥 ∈ On)
23 naddsuc2 8642 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
2422, 23sylan2 593 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
2524ancoms 458 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
26253adant3 1132 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = suc (𝐴 +no 𝑥))
27 onasuc 8469 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ ω) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
2827ancoms 458 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝐴 ∈ On) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
29283adant3 1132 . . . . . 6 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +o suc 𝑥) = suc (𝐴 +o 𝑥))
3021, 26, 293eqtr4d 2774 . . . . 5 ((𝑥 ∈ ω ∧ 𝐴 ∈ On ∧ (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))
31303exp 1119 . . . 4 (𝑥 ∈ ω → (𝐴 ∈ On → ((𝐴 +no 𝑥) = (𝐴 +o 𝑥) → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
3231a2d 29 . . 3 (𝑥 ∈ ω → ((𝐴 ∈ On → (𝐴 +no 𝑥) = (𝐴 +o 𝑥)) → (𝐴 ∈ On → (𝐴 +no suc 𝑥) = (𝐴 +o suc 𝑥))))
334, 8, 12, 16, 19, 32finds 7852 . 2 (𝐵 ∈ ω → (𝐴 ∈ On → (𝐴 +no 𝐵) = (𝐴 +o 𝐵)))
3433impcom 407 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +no 𝐵) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  c0 4292  Oncon0 6320  suc csuc 6322  (class class class)co 7369  ωcom 7822   +o coa 8408   +no cnadd 8606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415  df-nadd 8607
This theorem is referenced by:  omnaddcl  8644
  Copyright terms: Public domain W3C validator