![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negscut | Structured version Visualization version GIF version |
Description: The cut properties of surreal negation. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
negscut | ⊢ (𝐴 ∈ No → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsprop 27965 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥)))) | |
2 | 1 | a1d 25 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘ 0s )) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
3 | 2 | rgen2 3193 | . . 3 ⊢ ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘ 0s )) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥)))) |
4 | 3 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘ 0s )) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
5 | id 22 | . 2 ⊢ (𝐴 ∈ No → 𝐴 ∈ No ) | |
6 | 4, 5 | negsproplem3 27960 | 1 ⊢ (𝐴 ∈ No → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 ∀wral 3057 ∪ cun 3945 {csn 4630 class class class wbr 5150 “ cima 5683 ‘cfv 6551 No csur 27591 <s cslt 27592 bday cbday 27593 <<s csslt 27731 0s c0s 27773 L cleft 27790 R cright 27791 -us cnegs 27950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-1o 8491 df-2o 8492 df-no 27594 df-slt 27595 df-bday 27596 df-sslt 27732 df-scut 27734 df-0s 27775 df-made 27792 df-old 27793 df-left 27795 df-right 27796 df-norec 27873 df-negs 27952 |
This theorem is referenced by: negscut2 27970 |
Copyright terms: Public domain | W3C validator |