MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem3 Structured version   Visualization version   GIF version

Theorem negsproplem3 27988
Description: Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem2.1 (𝜑𝐴 No )
Assertion
Ref Expression
negsproplem3 (𝜑 → (( -us𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)} ∧ {( -us𝐴)} <<s ( -us “ ( L ‘𝐴))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem3
StepHypRef Expression
1 negsproplem.1 . . . 4 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
2 negsproplem2.1 . . . 4 (𝜑𝐴 No )
31, 2negsproplem2 27987 . . 3 (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)))
4 scutcut 27765 . . 3 (( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)) → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴))))
53, 4syl 17 . 2 (𝜑 → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴))))
6 negsval 27983 . . . . 5 (𝐴 No → ( -us𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))
72, 6syl 17 . . . 4 (𝜑 → ( -us𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))))
87eleq1d 2819 . . 3 (𝜑 → (( -us𝐴) ∈ No ↔ (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ))
97sneqd 4613 . . . 4 (𝜑 → {( -us𝐴)} = {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))})
109breq2d 5131 . . 3 (𝜑 → (( -us “ ( R ‘𝐴)) <<s {( -us𝐴)} ↔ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))}))
119breq1d 5129 . . 3 (𝜑 → ({( -us𝐴)} <<s ( -us “ ( L ‘𝐴)) ↔ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴))))
128, 10, 113anbi123d 1438 . 2 (𝜑 → ((( -us𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)} ∧ {( -us𝐴)} <<s ( -us “ ( L ‘𝐴))) ↔ ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))))
135, 12mpbird 257 1 (𝜑 → (( -us𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)} ∧ {( -us𝐴)} <<s ( -us “ ( L ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cun 3924  {csn 4601   class class class wbr 5119  cima 5657  cfv 6531  (class class class)co 7405   No csur 27603   <s cslt 27604   bday cbday 27605   <<s csslt 27744   |s cscut 27746   L cleft 27805   R cright 27806   -us cnegs 27977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745  df-scut 27747  df-0s 27788  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-negs 27979
This theorem is referenced by:  negsproplem4  27989  negsproplem5  27990  negsproplem6  27991  negsprop  27993  negscut  27997
  Copyright terms: Public domain W3C validator