| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsproplem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025.) |
| Ref | Expression |
|---|---|
| negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
| negsproplem2.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| Ref | Expression |
|---|---|
| negsproplem3 | ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsproplem.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
| 2 | negsproplem2.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | 1, 2 | negsproplem2 27940 | . . 3 ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) |
| 4 | scutcut 27712 | . . 3 ⊢ (( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)) → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) |
| 6 | negsval 27936 | . . . . 5 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) | |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝜑 → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ↔ (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No )) |
| 9 | 7 | sneqd 4589 | . . . 4 ⊢ (𝜑 → {( -us ‘𝐴)} = {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))}) |
| 10 | 9 | breq2d 5104 | . . 3 ⊢ (𝜑 → (( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ↔ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))})) |
| 11 | 9 | breq1d 5102 | . . 3 ⊢ (𝜑 → ({( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)) ↔ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) |
| 12 | 8, 10, 11 | 3anbi123d 1438 | . 2 ⊢ (𝜑 → ((( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴))) ↔ ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴))))) |
| 13 | 5, 12 | mpbird 257 | 1 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cun 3901 {csn 4577 class class class wbr 5092 “ cima 5622 ‘cfv 6482 (class class class)co 7349 No csur 27549 <s cslt 27550 bday cbday 27551 <<s csslt 27691 |s cscut 27693 L cleft 27755 R cright 27756 -us cnegs 27930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sslt 27692 df-scut 27694 df-0s 27738 df-made 27757 df-old 27758 df-left 27760 df-right 27761 df-norec 27850 df-negs 27932 |
| This theorem is referenced by: negsproplem4 27942 negsproplem5 27943 negsproplem6 27944 negsprop 27946 negscut 27950 |
| Copyright terms: Public domain | W3C validator |