| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsproplem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025.) |
| Ref | Expression |
|---|---|
| negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
| negsproplem2.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| Ref | Expression |
|---|---|
| negsproplem3 | ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsproplem.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
| 2 | negsproplem2.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | 1, 2 | negsproplem2 27975 | . . 3 ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) |
| 4 | scutcut 27747 | . . 3 ⊢ (( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)) → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) |
| 6 | negsval 27971 | . . . . 5 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) | |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝜑 → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) |
| 8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ↔ (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No )) |
| 9 | 7 | sneqd 4597 | . . . 4 ⊢ (𝜑 → {( -us ‘𝐴)} = {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))}) |
| 10 | 9 | breq2d 5114 | . . 3 ⊢ (𝜑 → (( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ↔ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))})) |
| 11 | 9 | breq1d 5112 | . . 3 ⊢ (𝜑 → ({( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)) ↔ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) |
| 12 | 8, 10, 11 | 3anbi123d 1438 | . 2 ⊢ (𝜑 → ((( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴))) ↔ ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴))))) |
| 13 | 5, 12 | mpbird 257 | 1 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cun 3909 {csn 4585 class class class wbr 5102 “ cima 5634 ‘cfv 6499 (class class class)co 7369 No csur 27584 <s cslt 27585 bday cbday 27586 <<s csslt 27726 |s cscut 27728 L cleft 27790 R cright 27791 -us cnegs 27965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-no 27587 df-slt 27588 df-bday 27589 df-sslt 27727 df-scut 27729 df-0s 27773 df-made 27792 df-old 27793 df-left 27795 df-right 27796 df-norec 27885 df-negs 27967 |
| This theorem is referenced by: negsproplem4 27977 negsproplem5 27978 negsproplem6 27979 negsprop 27981 negscut 27985 |
| Copyright terms: Public domain | W3C validator |