![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsproplem3 | Structured version Visualization version GIF version |
Description: Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025.) |
Ref | Expression |
---|---|
negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
negsproplem2.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
Ref | Expression |
---|---|
negsproplem3 | ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsproplem.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
2 | negsproplem2.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
3 | 1, 2 | negsproplem2 27954 | . . 3 ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) |
4 | scutcut 27747 | . . 3 ⊢ (( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)) → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) |
6 | negsval 27951 | . . . . 5 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) | |
7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝜑 → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) |
8 | 7 | eleq1d 2810 | . . 3 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ↔ (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No )) |
9 | 7 | sneqd 4637 | . . . 4 ⊢ (𝜑 → {( -us ‘𝐴)} = {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))}) |
10 | 9 | breq2d 5156 | . . 3 ⊢ (𝜑 → (( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ↔ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))})) |
11 | 9 | breq1d 5154 | . . 3 ⊢ (𝜑 → ({( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)) ↔ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) |
12 | 8, 10, 11 | 3anbi123d 1432 | . 2 ⊢ (𝜑 → ((( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴))) ↔ ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴))))) |
13 | 5, 12 | mpbird 256 | 1 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ∪ cun 3939 {csn 4625 class class class wbr 5144 “ cima 5676 ‘cfv 6543 (class class class)co 7413 No csur 27586 <s cslt 27587 bday cbday 27588 <<s csslt 27726 |s cscut 27728 L cleft 27785 R cright 27786 -us cnegs 27945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27589 df-slt 27590 df-bday 27591 df-sslt 27727 df-scut 27729 df-0s 27770 df-made 27787 df-old 27788 df-left 27790 df-right 27791 df-norec 27868 df-negs 27947 |
This theorem is referenced by: negsproplem4 27956 negsproplem5 27957 negsproplem6 27958 negsprop 27960 negscut 27964 |
Copyright terms: Public domain | W3C validator |