![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsproplem3 | Structured version Visualization version GIF version |
Description: Lemma for surreal negation. Give the cut properties of surreal negation. (Contributed by Scott Fenton, 2-Feb-2025.) |
Ref | Expression |
---|---|
negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
negsproplem2.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
Ref | Expression |
---|---|
negsproplem3 | ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsproplem.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
2 | negsproplem2.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
3 | 1, 2 | negsproplem2 27915 | . . 3 ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) |
4 | scutcut 27708 | . . 3 ⊢ (( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)) → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) |
6 | negsval 27912 | . . . . 5 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) | |
7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝜑 → ( -us ‘𝐴) = (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))) |
8 | 7 | eleq1d 2813 | . . 3 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ↔ (( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No )) |
9 | 7 | sneqd 4636 | . . . 4 ⊢ (𝜑 → {( -us ‘𝐴)} = {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))}) |
10 | 9 | breq2d 5154 | . . 3 ⊢ (𝜑 → (( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ↔ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))})) |
11 | 9 | breq1d 5152 | . . 3 ⊢ (𝜑 → ({( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)) ↔ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴)))) |
12 | 8, 10, 11 | 3anbi123d 1433 | . 2 ⊢ (𝜑 → ((( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴))) ↔ ((( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴))) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} ∧ {(( -us “ ( R ‘𝐴)) |s ( -us “ ( L ‘𝐴)))} <<s ( -us “ ( L ‘𝐴))))) |
13 | 5, 12 | mpbird 257 | 1 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∪ cun 3942 {csn 4624 class class class wbr 5142 “ cima 5675 ‘cfv 6542 (class class class)co 7414 No csur 27547 <s cslt 27548 bday cbday 27549 <<s csslt 27687 |s cscut 27689 L cleft 27746 R cright 27747 -us cnegs 27906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-no 27550 df-slt 27551 df-bday 27552 df-sslt 27688 df-scut 27690 df-0s 27731 df-made 27748 df-old 27749 df-left 27751 df-right 27752 df-norec 27829 df-negs 27908 |
This theorem is referenced by: negsproplem4 27917 negsproplem5 27918 negsproplem6 27919 negsprop 27921 negscut 27925 |
Copyright terms: Public domain | W3C validator |