| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetleib1 | Structured version Visualization version GIF version | ||
| Description: Full substitution of an alternative determinant definition (also known as Leibniz' Formula). (Contributed by Stefan O'Rear, 3-Oct-2015.) (Revised by AV, 26-Dec-2018.) |
| Ref | Expression |
|---|---|
| mdetfval1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdetfval1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdetfval1.b | ⊢ 𝐵 = (Base‘𝐴) |
| mdetfval1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| mdetfval1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| mdetfval1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| mdetfval1.t | ⊢ · = (.r‘𝑅) |
| mdetfval1.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| mdetleib1 | ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq 7419 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑝‘𝑥)𝑚𝑥) = ((𝑝‘𝑥)𝑀𝑥)) | |
| 2 | 1 | mpteq2dv 5224 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)) = (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))) |
| 3 | 2 | oveq2d 7429 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))) = (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))) |
| 4 | 3 | oveq2d 7429 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))) = ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))) |
| 5 | 4 | mpteq2dv 5224 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))) = (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) |
| 6 | 5 | oveq2d 7429 | . 2 ⊢ (𝑚 = 𝑀 → (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥)))))) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| 7 | mdetfval1.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 8 | mdetfval1.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 9 | mdetfval1.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 10 | mdetfval1.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 11 | mdetfval1.y | . . 3 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 12 | mdetfval1.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 13 | mdetfval1.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 14 | mdetfval1.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
| 15 | 7, 8, 9, 10, 11, 12, 13, 14 | mdetfval1 22544 | . 2 ⊢ 𝐷 = (𝑚 ∈ 𝐵 ↦ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑚𝑥))))))) |
| 16 | ovex 7446 | . 2 ⊢ (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥)))))) ∈ V | |
| 17 | 6, 15, 16 | fvmpt 6996 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈ 𝑃 ↦ ((𝑌‘(𝑆‘𝑝)) · (𝑈 Σg (𝑥 ∈ 𝑁 ↦ ((𝑝‘𝑥)𝑀𝑥))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 .rcmulr 17274 Σg cgsu 17456 SymGrpcsymg 19354 pmSgncpsgn 19475 mulGrpcmgp 20105 ℤRHomczrh 21472 Mat cmat 22359 maDet cmdat 22538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-hash 14352 df-word 14535 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-tset 17292 df-efmnd 18851 df-symg 19355 df-psgn 19477 df-mat 22360 df-mdet 22539 |
| This theorem is referenced by: m2detleib 22585 |
| Copyright terms: Public domain | W3C validator |