![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2ons | Structured version Visualization version GIF version |
Description: The successor of a surreal ordinal is a surreal ordinal. (Contributed by Scott Fenton, 22-Aug-2025.) |
Ref | Expression |
---|---|
peano2ons | ⊢ (𝐴 ∈ Ons → (𝐴 +s 1s ) ∈ Ons) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ons 28290 | . 2 ⊢ 1s ∈ Ons | |
2 | onaddscl 28296 | . 2 ⊢ ((𝐴 ∈ Ons ∧ 1s ∈ Ons) → (𝐴 +s 1s ) ∈ Ons) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝐴 ∈ Ons → (𝐴 +s 1s ) ∈ Ons) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7443 1s c1s 27878 +s cadds 28002 Onscons 28284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-1o 8516 df-2o 8517 df-nadd 8716 df-no 27697 df-slt 27698 df-bday 27699 df-sle 27800 df-sslt 27836 df-scut 27838 df-0s 27879 df-1s 27880 df-made 27896 df-old 27897 df-left 27899 df-right 27900 df-norec2 27992 df-adds 28003 df-ons 28285 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |