MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmulscl Structured version   Visualization version   GIF version

Theorem onmulscl 28209
Description: The surreal ordinals are closed under multiplication. (Contributed by Scott Fenton, 22-Aug-2025.)
Assertion
Ref Expression
onmulscl ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) ∈ Ons)

Proof of Theorem onmulscl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6835 . . . 4 ( L ‘𝐴) ∈ V
2 fvex 6835 . . . 4 ( L ‘𝐵) ∈ V
31, 2ab2rexex 7911 . . 3 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∈ V
43a1i 11 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∈ V)
5 leftssno 27824 . . . . . . . . . . 11 ( L ‘𝐴) ⊆ No
65sseli 3930 . . . . . . . . . 10 (𝑦 ∈ ( L ‘𝐴) → 𝑦 No )
76adantr 480 . . . . . . . . 9 ((𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵)) → 𝑦 No )
87adantl 481 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝑦 No )
9 onsno 28190 . . . . . . . . . 10 (𝐵 ∈ Ons𝐵 No )
109adantl 481 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 No )
1110adantr 480 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝐵 No )
128, 11mulscld 28072 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝑦 ·s 𝐵) ∈ No )
13 onsno 28190 . . . . . . . . . 10 (𝐴 ∈ Ons𝐴 No )
1413adantr 480 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 No )
1514adantr 480 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝐴 No )
16 leftssno 27824 . . . . . . . . . . 11 ( L ‘𝐵) ⊆ No
1716sseli 3930 . . . . . . . . . 10 (𝑧 ∈ ( L ‘𝐵) → 𝑧 No )
1817adantl 481 . . . . . . . . 9 ((𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵)) → 𝑧 No )
1918adantl 481 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝑧 No )
2015, 19mulscld 28072 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝐴 ·s 𝑧) ∈ No )
2112, 20addscld 27921 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → ((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) ∈ No )
228, 19mulscld 28072 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝑦 ·s 𝑧) ∈ No )
2321, 22subscld 28001 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) ∈ No )
24 eleq1 2819 . . . . 5 (𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) → (𝑥 No ↔ (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) ∈ No ))
2523, 24syl5ibrcom 247 . . . 4 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) → 𝑥 No ))
2625rexlimdvva 3189 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) → 𝑥 No ))
2726abssdv 4019 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ⊆ No )
281elpw 4554 . . . . . 6 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
295, 28mpbir 231 . . . . 5 ( L ‘𝐴) ∈ 𝒫 No
30 nulssgt 27737 . . . . 5 (( L ‘𝐴) ∈ 𝒫 No → ( L ‘𝐴) <<s ∅)
3129, 30mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐴) <<s ∅)
322elpw 4554 . . . . . 6 (( L ‘𝐵) ∈ 𝒫 No ↔ ( L ‘𝐵) ⊆ No )
3316, 32mpbir 231 . . . . 5 ( L ‘𝐵) ∈ 𝒫 No
34 nulssgt 27737 . . . . 5 (( L ‘𝐵) ∈ 𝒫 No → ( L ‘𝐵) <<s ∅)
3533, 34mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐵) <<s ∅)
36 onscutleft 28198 . . . . 5 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
3736adantr 480 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 = (( L ‘𝐴) |s ∅))
38 onscutleft 28198 . . . . 5 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
3938adantl 481 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 = (( L ‘𝐵) |s ∅))
4031, 35, 37, 39mulsunif 28087 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) |s ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))})))
41 rex0 4310 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
4241abf 4356 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} = ∅
4342uneq2i 4115 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ ∅)
44 un0 4344 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ ∅) = {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}
4543, 44eqtri 2754 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}
46 rex0 4310 . . . . . . . . 9 ¬ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
4746a1i 11 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐴) → ¬ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)))
4847nrex 3060 . . . . . . 7 ¬ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
4948abf 4356 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} = ∅
50 rex0 4310 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
5150abf 4356 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} = ∅
5249, 51uneq12i 4116 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = (∅ ∪ ∅)
53 un0 4344 . . . . 5 (∅ ∪ ∅) = ∅
5452, 53eqtri 2754 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = ∅
5545, 54oveq12i 7358 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) |s ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))})) = ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} |s ∅)
5640, 55eqtrdi 2782 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) = ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} |s ∅))
574, 27, 56elons2d 28194 1 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  cun 3900  wss 3902  c0 4283  𝒫 cpw 4550   class class class wbr 5091  cfv 6481  (class class class)co 7346   No csur 27576   <<s csslt 27718   |s cscut 27720   L cleft 27784   +s cadds 27900   -s csubs 27960   ·s cmuls 28043  Onscons 28186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec 27879  df-norec2 27890  df-adds 27901  df-negs 27961  df-subs 27962  df-muls 28044  df-ons 28187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator