MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmulscl Structured version   Visualization version   GIF version

Theorem onmulscl 28182
Description: The surreal ordinals are closed under multiplication. (Contributed by Scott Fenton, 22-Aug-2025.)
Assertion
Ref Expression
onmulscl ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) ∈ Ons)

Proof of Theorem onmulscl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6878 . . . 4 ( L ‘𝐴) ∈ V
2 fvex 6878 . . . 4 ( L ‘𝐵) ∈ V
31, 2ab2rexex 7967 . . 3 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∈ V
43a1i 11 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∈ V)
5 leftssno 27799 . . . . . . . . . . 11 ( L ‘𝐴) ⊆ No
65sseli 3950 . . . . . . . . . 10 (𝑦 ∈ ( L ‘𝐴) → 𝑦 No )
76adantr 480 . . . . . . . . 9 ((𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵)) → 𝑦 No )
87adantl 481 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝑦 No )
9 onsno 28163 . . . . . . . . . 10 (𝐵 ∈ Ons𝐵 No )
109adantl 481 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 No )
1110adantr 480 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝐵 No )
128, 11mulscld 28045 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝑦 ·s 𝐵) ∈ No )
13 onsno 28163 . . . . . . . . . 10 (𝐴 ∈ Ons𝐴 No )
1413adantr 480 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 No )
1514adantr 480 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝐴 No )
16 leftssno 27799 . . . . . . . . . . 11 ( L ‘𝐵) ⊆ No
1716sseli 3950 . . . . . . . . . 10 (𝑧 ∈ ( L ‘𝐵) → 𝑧 No )
1817adantl 481 . . . . . . . . 9 ((𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵)) → 𝑧 No )
1918adantl 481 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝑧 No )
2015, 19mulscld 28045 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝐴 ·s 𝑧) ∈ No )
2112, 20addscld 27894 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → ((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) ∈ No )
228, 19mulscld 28045 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝑦 ·s 𝑧) ∈ No )
2321, 22subscld 27974 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) ∈ No )
24 eleq1 2817 . . . . 5 (𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) → (𝑥 No ↔ (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) ∈ No ))
2523, 24syl5ibrcom 247 . . . 4 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) → 𝑥 No ))
2625rexlimdvva 3196 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) → 𝑥 No ))
2726abssdv 4039 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ⊆ No )
281elpw 4575 . . . . . 6 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
295, 28mpbir 231 . . . . 5 ( L ‘𝐴) ∈ 𝒫 No
30 nulssgt 27717 . . . . 5 (( L ‘𝐴) ∈ 𝒫 No → ( L ‘𝐴) <<s ∅)
3129, 30mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐴) <<s ∅)
322elpw 4575 . . . . . 6 (( L ‘𝐵) ∈ 𝒫 No ↔ ( L ‘𝐵) ⊆ No )
3316, 32mpbir 231 . . . . 5 ( L ‘𝐵) ∈ 𝒫 No
34 nulssgt 27717 . . . . 5 (( L ‘𝐵) ∈ 𝒫 No → ( L ‘𝐵) <<s ∅)
3533, 34mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐵) <<s ∅)
36 onscutleft 28171 . . . . 5 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
3736adantr 480 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 = (( L ‘𝐴) |s ∅))
38 onscutleft 28171 . . . . 5 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
3938adantl 481 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 = (( L ‘𝐵) |s ∅))
4031, 35, 37, 39mulsunif 28060 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) |s ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))})))
41 rex0 4331 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
4241abf 4377 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} = ∅
4342uneq2i 4136 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ ∅)
44 un0 4365 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ ∅) = {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}
4543, 44eqtri 2753 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}
46 rex0 4331 . . . . . . . . 9 ¬ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
4746a1i 11 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐴) → ¬ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)))
4847nrex 3059 . . . . . . 7 ¬ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
4948abf 4377 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} = ∅
50 rex0 4331 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
5150abf 4377 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} = ∅
5249, 51uneq12i 4137 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = (∅ ∪ ∅)
53 un0 4365 . . . . 5 (∅ ∪ ∅) = ∅
5452, 53eqtri 2753 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = ∅
5545, 54oveq12i 7406 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) |s ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))})) = ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} |s ∅)
5640, 55eqtrdi 2781 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) = ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} |s ∅))
574, 27, 56elons2d 28167 1 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3055  Vcvv 3455  cun 3920  wss 3922  c0 4304  𝒫 cpw 4571   class class class wbr 5115  cfv 6519  (class class class)co 7394   No csur 27558   <<s csslt 27699   |s cscut 27701   L cleft 27760   +s cadds 27873   -s csubs 27933   ·s cmuls 28016  Onscons 28159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-ot 4606  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-1o 8443  df-2o 8444  df-nadd 8641  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-ons 28160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator