MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmulscl Structured version   Visualization version   GIF version

Theorem onmulscl 28175
Description: The surreal ordinals are closed under multiplication. (Contributed by Scott Fenton, 22-Aug-2025.)
Assertion
Ref Expression
onmulscl ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) ∈ Ons)

Proof of Theorem onmulscl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6871 . . . 4 ( L ‘𝐴) ∈ V
2 fvex 6871 . . . 4 ( L ‘𝐵) ∈ V
31, 2ab2rexex 7958 . . 3 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∈ V
43a1i 11 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∈ V)
5 leftssno 27792 . . . . . . . . . . 11 ( L ‘𝐴) ⊆ No
65sseli 3942 . . . . . . . . . 10 (𝑦 ∈ ( L ‘𝐴) → 𝑦 No )
76adantr 480 . . . . . . . . 9 ((𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵)) → 𝑦 No )
87adantl 481 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝑦 No )
9 onsno 28156 . . . . . . . . . 10 (𝐵 ∈ Ons𝐵 No )
109adantl 481 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 No )
1110adantr 480 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝐵 No )
128, 11mulscld 28038 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝑦 ·s 𝐵) ∈ No )
13 onsno 28156 . . . . . . . . . 10 (𝐴 ∈ Ons𝐴 No )
1413adantr 480 . . . . . . . . 9 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 No )
1514adantr 480 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝐴 No )
16 leftssno 27792 . . . . . . . . . . 11 ( L ‘𝐵) ⊆ No
1716sseli 3942 . . . . . . . . . 10 (𝑧 ∈ ( L ‘𝐵) → 𝑧 No )
1817adantl 481 . . . . . . . . 9 ((𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵)) → 𝑧 No )
1918adantl 481 . . . . . . . 8 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → 𝑧 No )
2015, 19mulscld 28038 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝐴 ·s 𝑧) ∈ No )
2112, 20addscld 27887 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → ((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) ∈ No )
228, 19mulscld 28038 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝑦 ·s 𝑧) ∈ No )
2321, 22subscld 27967 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) ∈ No )
24 eleq1 2816 . . . . 5 (𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) → (𝑥 No ↔ (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) ∈ No ))
2523, 24syl5ibrcom 247 . . . 4 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ (𝑦 ∈ ( L ‘𝐴) ∧ 𝑧 ∈ ( L ‘𝐵))) → (𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) → 𝑥 No ))
2625rexlimdvva 3194 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)) → 𝑥 No ))
2726abssdv 4031 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ⊆ No )
281elpw 4567 . . . . . 6 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
295, 28mpbir 231 . . . . 5 ( L ‘𝐴) ∈ 𝒫 No
30 nulssgt 27710 . . . . 5 (( L ‘𝐴) ∈ 𝒫 No → ( L ‘𝐴) <<s ∅)
3129, 30mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐴) <<s ∅)
322elpw 4567 . . . . . 6 (( L ‘𝐵) ∈ 𝒫 No ↔ ( L ‘𝐵) ⊆ No )
3316, 32mpbir 231 . . . . 5 ( L ‘𝐵) ∈ 𝒫 No
34 nulssgt 27710 . . . . 5 (( L ‘𝐵) ∈ 𝒫 No → ( L ‘𝐵) <<s ∅)
3533, 34mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐵) <<s ∅)
36 onscutleft 28164 . . . . 5 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
3736adantr 480 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 = (( L ‘𝐴) |s ∅))
38 onscutleft 28164 . . . . 5 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
3938adantl 481 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 = (( L ‘𝐵) |s ∅))
4031, 35, 37, 39mulsunif 28053 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) |s ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))})))
41 rex0 4323 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
4241abf 4369 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} = ∅
4342uneq2i 4128 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ ∅)
44 un0 4357 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ ∅) = {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}
4543, 44eqtri 2752 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}
46 rex0 4323 . . . . . . . . 9 ¬ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
4746a1i 11 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐴) → ¬ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧)))
4847nrex 3057 . . . . . . 7 ¬ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
4948abf 4369 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} = ∅
50 rex0 4323 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))
5150abf 4369 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} = ∅
5249, 51uneq12i 4129 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = (∅ ∪ ∅)
53 un0 4357 . . . . 5 (∅ ∪ ∅) = ∅
5452, 53eqtri 2752 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) = ∅
5545, 54oveq12i 7399 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))}) |s ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ∅ 𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ ∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))})) = ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} |s ∅)
5640, 55eqtrdi 2780 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) = ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)∃𝑧 ∈ ( L ‘𝐵)𝑥 = (((𝑦 ·s 𝐵) +s (𝐴 ·s 𝑧)) -s (𝑦 ·s 𝑧))} |s ∅))
574, 27, 56elons2d 28160 1 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 ·s 𝐵) ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  cun 3912  wss 3914  c0 4296  𝒫 cpw 4563   class class class wbr 5107  cfv 6511  (class class class)co 7387   No csur 27551   <<s csslt 27692   |s cscut 27694   L cleft 27753   +s cadds 27866   -s csubs 27926   ·s cmuls 28009  Onscons 28152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010  df-ons 28153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator