MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onaddscl Structured version   Visualization version   GIF version

Theorem onaddscl 28197
Description: The surreal ordinals are closed under addition. (Contributed by Scott Fenton, 22-Aug-2025.)
Assertion
Ref Expression
onaddscl ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)

Proof of Theorem onaddscl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6839 . . . . 5 ( L ‘𝐴) ∈ V
21abrexex 7904 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∈ V
3 fvex 6839 . . . . 5 ( L ‘𝐵) ∈ V
43abrexex 7904 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ∈ V
52, 4unex 7684 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V
65a1i 11 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V)
7 leftssno 27813 . . . . . . . . 9 ( L ‘𝐴) ⊆ No
87sseli 3933 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐴) → 𝑦 No )
98adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝑦 No )
10 onsno 28179 . . . . . . . 8 (𝐵 ∈ Ons𝐵 No )
1110ad2antlr 727 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝐵 No )
129, 11addscld 27910 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑦 +s 𝐵) ∈ No )
13 eleq1 2816 . . . . . 6 (𝑥 = (𝑦 +s 𝐵) → (𝑥 No ↔ (𝑦 +s 𝐵) ∈ No ))
1412, 13syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1514rexlimdva 3130 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1615abssdv 4022 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ⊆ No )
17 onsno 28179 . . . . . . . 8 (𝐴 ∈ Ons𝐴 No )
1817ad2antrr 726 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝐴 No )
19 leftssno 27813 . . . . . . . . 9 ( L ‘𝐵) ⊆ No
2019sseli 3933 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐵) → 𝑦 No )
2120adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝑦 No )
2218, 21addscld 27910 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝐴 +s 𝑦) ∈ No )
23 eleq1 2816 . . . . . 6 (𝑥 = (𝐴 +s 𝑦) → (𝑥 No ↔ (𝐴 +s 𝑦) ∈ No ))
2422, 23syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2524rexlimdva 3130 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2625abssdv 4022 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ⊆ No )
2716, 26unssd 4145 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ⊆ No )
281elpw 4557 . . . . . 6 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
297, 28mpbir 231 . . . . 5 ( L ‘𝐴) ∈ 𝒫 No
30 nulssgt 27727 . . . . 5 (( L ‘𝐴) ∈ 𝒫 No → ( L ‘𝐴) <<s ∅)
3129, 30mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐴) <<s ∅)
323elpw 4557 . . . . . 6 (( L ‘𝐵) ∈ 𝒫 No ↔ ( L ‘𝐵) ⊆ No )
3319, 32mpbir 231 . . . . 5 ( L ‘𝐵) ∈ 𝒫 No
34 nulssgt 27727 . . . . 5 (( L ‘𝐵) ∈ 𝒫 No → ( L ‘𝐵) <<s ∅)
3533, 34mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐵) <<s ∅)
36 onscutleft 28187 . . . . 5 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
3736adantr 480 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 = (( L ‘𝐴) |s ∅))
38 onscutleft 28187 . . . . 5 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
3938adantl 481 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 = (( L ‘𝐵) |s ∅))
4031, 35, 37, 39addsunif 27932 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})))
41 rex0 4313 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)
4241abf 4359 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} = ∅
43 rex0 4313 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)
4443abf 4359 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)} = ∅
4542, 44uneq12i 4119 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = (∅ ∪ ∅)
46 un0 4347 . . . . 5 (∅ ∪ ∅) = ∅
4745, 46eqtri 2752 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = ∅
4847oveq2i 7364 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅)
4940, 48eqtrdi 2780 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅))
506, 27, 49elons2d 28183 1 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3438  cun 3903  wss 3905  c0 4286  𝒫 cpw 4553   class class class wbr 5095  cfv 6486  (class class class)co 7353   No csur 27567   <<s csslt 27709   |s cscut 27711   L cleft 27773   +s cadds 27889  Onscons 28175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec2 27879  df-adds 27890  df-ons 28176
This theorem is referenced by:  peano2ons  28199
  Copyright terms: Public domain W3C validator