MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onaddscl Structured version   Visualization version   GIF version

Theorem onaddscl 28211
Description: The surreal ordinals are closed under addition. (Contributed by Scott Fenton, 22-Aug-2025.)
Assertion
Ref Expression
onaddscl ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)

Proof of Theorem onaddscl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6841 . . . . 5 ( L ‘𝐴) ∈ V
21abrexex 7900 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∈ V
3 fvex 6841 . . . . 5 ( L ‘𝐵) ∈ V
43abrexex 7900 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ∈ V
52, 4unex 7683 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V
65a1i 11 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V)
7 leftssno 27827 . . . . . . . . 9 ( L ‘𝐴) ⊆ No
87sseli 3926 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐴) → 𝑦 No )
98adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝑦 No )
10 onsno 28193 . . . . . . . 8 (𝐵 ∈ Ons𝐵 No )
1110ad2antlr 727 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝐵 No )
129, 11addscld 27924 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑦 +s 𝐵) ∈ No )
13 eleq1 2821 . . . . . 6 (𝑥 = (𝑦 +s 𝐵) → (𝑥 No ↔ (𝑦 +s 𝐵) ∈ No ))
1412, 13syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1514rexlimdva 3134 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1615abssdv 4016 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ⊆ No )
17 onsno 28193 . . . . . . . 8 (𝐴 ∈ Ons𝐴 No )
1817ad2antrr 726 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝐴 No )
19 leftssno 27827 . . . . . . . . 9 ( L ‘𝐵) ⊆ No
2019sseli 3926 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐵) → 𝑦 No )
2120adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝑦 No )
2218, 21addscld 27924 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝐴 +s 𝑦) ∈ No )
23 eleq1 2821 . . . . . 6 (𝑥 = (𝐴 +s 𝑦) → (𝑥 No ↔ (𝐴 +s 𝑦) ∈ No ))
2422, 23syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2524rexlimdva 3134 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2625abssdv 4016 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ⊆ No )
2716, 26unssd 4141 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ⊆ No )
281elpw 4553 . . . . . 6 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
297, 28mpbir 231 . . . . 5 ( L ‘𝐴) ∈ 𝒫 No
30 nulssgt 27740 . . . . 5 (( L ‘𝐴) ∈ 𝒫 No → ( L ‘𝐴) <<s ∅)
3129, 30mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐴) <<s ∅)
323elpw 4553 . . . . . 6 (( L ‘𝐵) ∈ 𝒫 No ↔ ( L ‘𝐵) ⊆ No )
3319, 32mpbir 231 . . . . 5 ( L ‘𝐵) ∈ 𝒫 No
34 nulssgt 27740 . . . . 5 (( L ‘𝐵) ∈ 𝒫 No → ( L ‘𝐵) <<s ∅)
3533, 34mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐵) <<s ∅)
36 onscutleft 28201 . . . . 5 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
3736adantr 480 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 = (( L ‘𝐴) |s ∅))
38 onscutleft 28201 . . . . 5 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
3938adantl 481 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 = (( L ‘𝐵) |s ∅))
4031, 35, 37, 39addsunif 27946 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})))
41 rex0 4309 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)
4241abf 4355 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} = ∅
43 rex0 4309 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)
4443abf 4355 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)} = ∅
4542, 44uneq12i 4115 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = (∅ ∪ ∅)
46 un0 4343 . . . . 5 (∅ ∪ ∅) = ∅
4745, 46eqtri 2756 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = ∅
4847oveq2i 7363 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅)
4940, 48eqtrdi 2784 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅))
506, 27, 49elons2d 28197 1 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437  cun 3896  wss 3898  c0 4282  𝒫 cpw 4549   class class class wbr 5093  cfv 6486  (class class class)co 7352   No csur 27579   <<s csslt 27721   |s cscut 27723   L cleft 27787   +s cadds 27903  Onscons 28189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec2 27893  df-adds 27904  df-ons 28190
This theorem is referenced by:  peano2ons  28213
  Copyright terms: Public domain W3C validator