MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onaddscl Structured version   Visualization version   GIF version

Theorem onaddscl 28221
Description: The surreal ordinals are closed under addition. (Contributed by Scott Fenton, 22-Aug-2025.)
Assertion
Ref Expression
onaddscl ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)

Proof of Theorem onaddscl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6898 . . . . 5 ( L ‘𝐴) ∈ V
21abrexex 7968 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∈ V
3 fvex 6898 . . . . 5 ( L ‘𝐵) ∈ V
43abrexex 7968 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ∈ V
52, 4unex 7745 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V
65a1i 11 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V)
7 leftssno 27854 . . . . . . . . 9 ( L ‘𝐴) ⊆ No
87sseli 3959 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐴) → 𝑦 No )
98adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝑦 No )
10 onsno 28213 . . . . . . . 8 (𝐵 ∈ Ons𝐵 No )
1110ad2antlr 727 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝐵 No )
129, 11addscld 27948 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑦 +s 𝐵) ∈ No )
13 eleq1 2821 . . . . . 6 (𝑥 = (𝑦 +s 𝐵) → (𝑥 No ↔ (𝑦 +s 𝐵) ∈ No ))
1412, 13syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1514rexlimdva 3142 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1615abssdv 4048 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ⊆ No )
17 onsno 28213 . . . . . . . 8 (𝐴 ∈ Ons𝐴 No )
1817ad2antrr 726 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝐴 No )
19 leftssno 27854 . . . . . . . . 9 ( L ‘𝐵) ⊆ No
2019sseli 3959 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐵) → 𝑦 No )
2120adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝑦 No )
2218, 21addscld 27948 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝐴 +s 𝑦) ∈ No )
23 eleq1 2821 . . . . . 6 (𝑥 = (𝐴 +s 𝑦) → (𝑥 No ↔ (𝐴 +s 𝑦) ∈ No ))
2422, 23syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2524rexlimdva 3142 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2625abssdv 4048 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ⊆ No )
2716, 26unssd 4172 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ⊆ No )
281elpw 4584 . . . . . 6 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
297, 28mpbir 231 . . . . 5 ( L ‘𝐴) ∈ 𝒫 No
30 nulssgt 27778 . . . . 5 (( L ‘𝐴) ∈ 𝒫 No → ( L ‘𝐴) <<s ∅)
3129, 30mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐴) <<s ∅)
323elpw 4584 . . . . . 6 (( L ‘𝐵) ∈ 𝒫 No ↔ ( L ‘𝐵) ⊆ No )
3319, 32mpbir 231 . . . . 5 ( L ‘𝐵) ∈ 𝒫 No
34 nulssgt 27778 . . . . 5 (( L ‘𝐵) ∈ 𝒫 No → ( L ‘𝐵) <<s ∅)
3533, 34mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐵) <<s ∅)
36 onscutleft 28220 . . . . 5 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
3736adantr 480 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 = (( L ‘𝐴) |s ∅))
38 onscutleft 28220 . . . . 5 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
3938adantl 481 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 = (( L ‘𝐵) |s ∅))
4031, 35, 37, 39addsunif 27970 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})))
41 rex0 4340 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)
4241abf 4386 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} = ∅
43 rex0 4340 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)
4443abf 4386 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)} = ∅
4542, 44uneq12i 4146 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = (∅ ∪ ∅)
46 un0 4374 . . . . 5 (∅ ∪ ∅) = ∅
4745, 46eqtri 2757 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = ∅
4847oveq2i 7423 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅)
4940, 48eqtrdi 2785 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅))
506, 27, 49elons2d 28217 1 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  Vcvv 3463  cun 3929  wss 3931  c0 4313  𝒫 cpw 4580   class class class wbr 5123  cfv 6540  (class class class)co 7412   No csur 27619   <<s csslt 27760   |s cscut 27762   L cleft 27819   +s cadds 27927  Onscons 28209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-1o 8487  df-2o 8488  df-nadd 8685  df-no 27622  df-slt 27623  df-bday 27624  df-sle 27725  df-sslt 27761  df-scut 27763  df-0s 27804  df-made 27821  df-old 27822  df-left 27824  df-right 27825  df-norec2 27917  df-adds 27928  df-ons 28210
This theorem is referenced by:  peano2ons  28223
  Copyright terms: Public domain W3C validator