| Step | Hyp | Ref
| Expression |
| 1 | | fvex 6898 |
. . . . 5
⊢ ( L
‘𝐴) ∈
V |
| 2 | 1 | abrexex 7968 |
. . . 4
⊢ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∈ V |
| 3 | | fvex 6898 |
. . . . 5
⊢ ( L
‘𝐵) ∈
V |
| 4 | 3 | abrexex 7968 |
. . . 4
⊢ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ∈ V |
| 5 | 2, 4 | unex 7745 |
. . 3
⊢ ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V |
| 6 | 5 | a1i 11 |
. 2
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ ({𝑥 ∣
∃𝑦 ∈ ( L
‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V) |
| 7 | | leftssno 27854 |
. . . . . . . . 9
⊢ ( L
‘𝐴) ⊆ No |
| 8 | 7 | sseli 3959 |
. . . . . . . 8
⊢ (𝑦 ∈ ( L ‘𝐴) → 𝑦 ∈ No
) |
| 9 | 8 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
∧ 𝑦 ∈ ( L
‘𝐴)) → 𝑦 ∈
No ) |
| 10 | | onsno 28213 |
. . . . . . . 8
⊢ (𝐵 ∈ Ons →
𝐵 ∈ No ) |
| 11 | 10 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
∧ 𝑦 ∈ ( L
‘𝐴)) → 𝐵 ∈
No ) |
| 12 | 9, 11 | addscld 27948 |
. . . . . 6
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
∧ 𝑦 ∈ ( L
‘𝐴)) → (𝑦 +s 𝐵) ∈ No
) |
| 13 | | eleq1 2821 |
. . . . . 6
⊢ (𝑥 = (𝑦 +s 𝐵) → (𝑥 ∈ No
↔ (𝑦 +s
𝐵) ∈ No )) |
| 14 | 12, 13 | syl5ibrcom 247 |
. . . . 5
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
∧ 𝑦 ∈ ( L
‘𝐴)) → (𝑥 = (𝑦 +s 𝐵) → 𝑥 ∈ No
)) |
| 15 | 14 | rexlimdva 3142 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ (∃𝑦 ∈ ( L
‘𝐴)𝑥 = (𝑦 +s 𝐵) → 𝑥 ∈ No
)) |
| 16 | 15 | abssdv 4048 |
. . 3
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ {𝑥 ∣
∃𝑦 ∈ ( L
‘𝐴)𝑥 = (𝑦 +s 𝐵)} ⊆ No
) |
| 17 | | onsno 28213 |
. . . . . . . 8
⊢ (𝐴 ∈ Ons →
𝐴 ∈ No ) |
| 18 | 17 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
∧ 𝑦 ∈ ( L
‘𝐵)) → 𝐴 ∈
No ) |
| 19 | | leftssno 27854 |
. . . . . . . . 9
⊢ ( L
‘𝐵) ⊆ No |
| 20 | 19 | sseli 3959 |
. . . . . . . 8
⊢ (𝑦 ∈ ( L ‘𝐵) → 𝑦 ∈ No
) |
| 21 | 20 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
∧ 𝑦 ∈ ( L
‘𝐵)) → 𝑦 ∈
No ) |
| 22 | 18, 21 | addscld 27948 |
. . . . . 6
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
∧ 𝑦 ∈ ( L
‘𝐵)) → (𝐴 +s 𝑦) ∈
No ) |
| 23 | | eleq1 2821 |
. . . . . 6
⊢ (𝑥 = (𝐴 +s 𝑦) → (𝑥 ∈ No
↔ (𝐴 +s
𝑦) ∈ No )) |
| 24 | 22, 23 | syl5ibrcom 247 |
. . . . 5
⊢ (((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
∧ 𝑦 ∈ ( L
‘𝐵)) → (𝑥 = (𝐴 +s 𝑦) → 𝑥 ∈ No
)) |
| 25 | 24 | rexlimdva 3142 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ (∃𝑦 ∈ ( L
‘𝐵)𝑥 = (𝐴 +s 𝑦) → 𝑥 ∈ No
)) |
| 26 | 25 | abssdv 4048 |
. . 3
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ {𝑥 ∣
∃𝑦 ∈ ( L
‘𝐵)𝑥 = (𝐴 +s 𝑦)} ⊆ No
) |
| 27 | 16, 26 | unssd 4172 |
. 2
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ ({𝑥 ∣
∃𝑦 ∈ ( L
‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ⊆ No
) |
| 28 | 1 | elpw 4584 |
. . . . . 6
⊢ (( L
‘𝐴) ∈ 𝒫
No ↔ ( L ‘𝐴) ⊆ No
) |
| 29 | 7, 28 | mpbir 231 |
. . . . 5
⊢ ( L
‘𝐴) ∈ 𝒫
No |
| 30 | | nulssgt 27778 |
. . . . 5
⊢ (( L
‘𝐴) ∈ 𝒫
No → ( L ‘𝐴) <<s ∅) |
| 31 | 29, 30 | mp1i 13 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ ( L ‘𝐴)
<<s ∅) |
| 32 | 3 | elpw 4584 |
. . . . . 6
⊢ (( L
‘𝐵) ∈ 𝒫
No ↔ ( L ‘𝐵) ⊆ No
) |
| 33 | 19, 32 | mpbir 231 |
. . . . 5
⊢ ( L
‘𝐵) ∈ 𝒫
No |
| 34 | | nulssgt 27778 |
. . . . 5
⊢ (( L
‘𝐵) ∈ 𝒫
No → ( L ‘𝐵) <<s ∅) |
| 35 | 33, 34 | mp1i 13 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ ( L ‘𝐵)
<<s ∅) |
| 36 | | onscutleft 28220 |
. . . . 5
⊢ (𝐴 ∈ Ons →
𝐴 = (( L ‘𝐴) |s ∅)) |
| 37 | 36 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ 𝐴 = (( L
‘𝐴) |s
∅)) |
| 38 | | onscutleft 28220 |
. . . . 5
⊢ (𝐵 ∈ Ons →
𝐵 = (( L ‘𝐵) |s ∅)) |
| 39 | 38 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ 𝐵 = (( L
‘𝐵) |s
∅)) |
| 40 | 31, 35, 37, 39 | addsunif 27970 |
. . 3
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ (𝐴 +s
𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}))) |
| 41 | | rex0 4340 |
. . . . . . 7
⊢ ¬
∃𝑦 ∈ ∅
𝑥 = (𝑦 +s 𝐵) |
| 42 | 41 | abf 4386 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} = ∅ |
| 43 | | rex0 4340 |
. . . . . . 7
⊢ ¬
∃𝑦 ∈ ∅
𝑥 = (𝐴 +s 𝑦) |
| 44 | 43 | abf 4386 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)} = ∅ |
| 45 | 42, 44 | uneq12i 4146 |
. . . . 5
⊢ ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = (∅ ∪
∅) |
| 46 | | un0 4374 |
. . . . 5
⊢ (∅
∪ ∅) = ∅ |
| 47 | 45, 46 | eqtri 2757 |
. . . 4
⊢ ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = ∅ |
| 48 | 47 | oveq2i 7423 |
. . 3
⊢ (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅) |
| 49 | 40, 48 | eqtrdi 2785 |
. 2
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ (𝐴 +s
𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅)) |
| 50 | 6, 27, 49 | elons2d 28217 |
1
⊢ ((𝐴 ∈ Ons ∧
𝐵 ∈ Ons)
→ (𝐴 +s
𝐵) ∈
Ons) |