MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onaddscl Structured version   Visualization version   GIF version

Theorem onaddscl 28312
Description: The surreal ordinals are closed under addition. (Contributed by Scott Fenton, 22-Aug-2025.)
Assertion
Ref Expression
onaddscl ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)

Proof of Theorem onaddscl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6927 . . . . 5 ( L ‘𝐴) ∈ V
21abrexex 7995 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∈ V
3 fvex 6927 . . . . 5 ( L ‘𝐵) ∈ V
43abrexex 7995 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ∈ V
52, 4unex 7770 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V
65a1i 11 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V)
7 leftssno 27945 . . . . . . . . 9 ( L ‘𝐴) ⊆ No
87sseli 3994 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐴) → 𝑦 No )
98adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝑦 No )
10 onsno 28304 . . . . . . . 8 (𝐵 ∈ Ons𝐵 No )
1110ad2antlr 727 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝐵 No )
129, 11addscld 28039 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑦 +s 𝐵) ∈ No )
13 eleq1 2829 . . . . . 6 (𝑥 = (𝑦 +s 𝐵) → (𝑥 No ↔ (𝑦 +s 𝐵) ∈ No ))
1412, 13syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1514rexlimdva 3155 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1615abssdv 4081 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ⊆ No )
17 onsno 28304 . . . . . . . 8 (𝐴 ∈ Ons𝐴 No )
1817ad2antrr 726 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝐴 No )
19 leftssno 27945 . . . . . . . . 9 ( L ‘𝐵) ⊆ No
2019sseli 3994 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐵) → 𝑦 No )
2120adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝑦 No )
2218, 21addscld 28039 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝐴 +s 𝑦) ∈ No )
23 eleq1 2829 . . . . . 6 (𝑥 = (𝐴 +s 𝑦) → (𝑥 No ↔ (𝐴 +s 𝑦) ∈ No ))
2422, 23syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2524rexlimdva 3155 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2625abssdv 4081 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ⊆ No )
2716, 26unssd 4205 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ⊆ No )
281elpw 4612 . . . . . 6 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
297, 28mpbir 231 . . . . 5 ( L ‘𝐴) ∈ 𝒫 No
30 nulssgt 27869 . . . . 5 (( L ‘𝐴) ∈ 𝒫 No → ( L ‘𝐴) <<s ∅)
3129, 30mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐴) <<s ∅)
323elpw 4612 . . . . . 6 (( L ‘𝐵) ∈ 𝒫 No ↔ ( L ‘𝐵) ⊆ No )
3319, 32mpbir 231 . . . . 5 ( L ‘𝐵) ∈ 𝒫 No
34 nulssgt 27869 . . . . 5 (( L ‘𝐵) ∈ 𝒫 No → ( L ‘𝐵) <<s ∅)
3533, 34mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐵) <<s ∅)
36 onscutleft 28311 . . . . 5 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
3736adantr 480 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 = (( L ‘𝐴) |s ∅))
38 onscutleft 28311 . . . . 5 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
3938adantl 481 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 = (( L ‘𝐵) |s ∅))
4031, 35, 37, 39addsunif 28061 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})))
41 rex0 4369 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)
4241abf 4415 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} = ∅
43 rex0 4369 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)
4443abf 4415 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)} = ∅
4542, 44uneq12i 4179 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = (∅ ∪ ∅)
46 un0 4403 . . . . 5 (∅ ∪ ∅) = ∅
4745, 46eqtri 2765 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = ∅
4847oveq2i 7449 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅)
4940, 48eqtrdi 2793 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅))
506, 27, 49elons2d 28308 1 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2714  wrex 3070  Vcvv 3481  cun 3964  wss 3966  c0 4342  𝒫 cpw 4608   class class class wbr 5151  cfv 6569  (class class class)co 7438   No csur 27710   <<s csslt 27851   |s cscut 27853   L cleft 27910   +s cadds 28018  Onscons 28300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-ot 4643  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-1o 8514  df-2o 8515  df-nadd 8712  df-no 27713  df-slt 27714  df-bday 27715  df-sle 27816  df-sslt 27852  df-scut 27854  df-0s 27895  df-made 27912  df-old 27913  df-left 27915  df-right 27916  df-norec2 28008  df-adds 28019  df-ons 28301
This theorem is referenced by:  peano2ons  28314
  Copyright terms: Public domain W3C validator