MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onaddscl Structured version   Visualization version   GIF version

Theorem onaddscl 28295
Description: The surreal ordinals are closed under addition. (Contributed by Scott Fenton, 22-Aug-2025.)
Assertion
Ref Expression
onaddscl ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)

Proof of Theorem onaddscl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6932 . . . . 5 ( L ‘𝐴) ∈ V
21abrexex 7999 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∈ V
3 fvex 6932 . . . . 5 ( L ‘𝐵) ∈ V
43abrexex 7999 . . . 4 {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ∈ V
52, 4unex 7775 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V
65a1i 11 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ∈ V)
7 leftssno 27928 . . . . . . . . 9 ( L ‘𝐴) ⊆ No
87sseli 3998 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐴) → 𝑦 No )
98adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝑦 No )
10 onsno 28287 . . . . . . . 8 (𝐵 ∈ Ons𝐵 No )
1110ad2antlr 726 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → 𝐵 No )
129, 11addscld 28022 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑦 +s 𝐵) ∈ No )
13 eleq1 2826 . . . . . 6 (𝑥 = (𝑦 +s 𝐵) → (𝑥 No ↔ (𝑦 +s 𝐵) ∈ No ))
1412, 13syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐴)) → (𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1514rexlimdva 3157 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵) → 𝑥 No ))
1615abssdv 4085 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ⊆ No )
17 onsno 28287 . . . . . . . 8 (𝐴 ∈ Ons𝐴 No )
1817ad2antrr 725 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝐴 No )
19 leftssno 27928 . . . . . . . . 9 ( L ‘𝐵) ⊆ No
2019sseli 3998 . . . . . . . 8 (𝑦 ∈ ( L ‘𝐵) → 𝑦 No )
2120adantl 481 . . . . . . 7 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → 𝑦 No )
2218, 21addscld 28022 . . . . . 6 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝐴 +s 𝑦) ∈ No )
23 eleq1 2826 . . . . . 6 (𝑥 = (𝐴 +s 𝑦) → (𝑥 No ↔ (𝐴 +s 𝑦) ∈ No ))
2422, 23syl5ibrcom 247 . . . . 5 (((𝐴 ∈ Ons𝐵 ∈ Ons) ∧ 𝑦 ∈ ( L ‘𝐵)) → (𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2524rexlimdva 3157 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦) → 𝑥 No ))
2625abssdv 4085 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)} ⊆ No )
2716, 26unssd 4209 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) ⊆ No )
281elpw 4626 . . . . . 6 (( L ‘𝐴) ∈ 𝒫 No ↔ ( L ‘𝐴) ⊆ No )
297, 28mpbir 231 . . . . 5 ( L ‘𝐴) ∈ 𝒫 No
30 nulssgt 27852 . . . . 5 (( L ‘𝐴) ∈ 𝒫 No → ( L ‘𝐴) <<s ∅)
3129, 30mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐴) <<s ∅)
323elpw 4626 . . . . . 6 (( L ‘𝐵) ∈ 𝒫 No ↔ ( L ‘𝐵) ⊆ No )
3319, 32mpbir 231 . . . . 5 ( L ‘𝐵) ∈ 𝒫 No
34 nulssgt 27852 . . . . 5 (( L ‘𝐵) ∈ 𝒫 No → ( L ‘𝐵) <<s ∅)
3533, 34mp1i 13 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → ( L ‘𝐵) <<s ∅)
36 onscutleft 28294 . . . . 5 (𝐴 ∈ Ons𝐴 = (( L ‘𝐴) |s ∅))
3736adantr 480 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐴 = (( L ‘𝐴) |s ∅))
38 onscutleft 28294 . . . . 5 (𝐵 ∈ Ons𝐵 = (( L ‘𝐵) |s ∅))
3938adantl 481 . . . 4 ((𝐴 ∈ Ons𝐵 ∈ Ons) → 𝐵 = (( L ‘𝐵) |s ∅))
4031, 35, 37, 39addsunif 28044 . . 3 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})))
41 rex0 4378 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)
4241abf 4425 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} = ∅
43 rex0 4378 . . . . . . 7 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)
4443abf 4425 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)} = ∅
4542, 44uneq12i 4183 . . . . 5 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = (∅ ∪ ∅)
46 un0 4413 . . . . 5 (∅ ∪ ∅) = ∅
4745, 46eqtri 2762 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)}) = ∅
4847oveq2i 7456 . . 3 (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝐴 +s 𝑦)})) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅)
4940, 48eqtrdi 2790 . 2 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) = (({𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐴)𝑥 = (𝑦 +s 𝐵)} ∪ {𝑥 ∣ ∃𝑦 ∈ ( L ‘𝐵)𝑥 = (𝐴 +s 𝑦)}) |s ∅))
506, 27, 49elons2d 28291 1 ((𝐴 ∈ Ons𝐵 ∈ Ons) → (𝐴 +s 𝐵) ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2103  {cab 2711  wrex 3072  Vcvv 3482  cun 3968  wss 3970  c0 4347  𝒫 cpw 4622   class class class wbr 5169  cfv 6572  (class class class)co 7445   No csur 27693   <<s csslt 27834   |s cscut 27836   L cleft 27893   +s cadds 28001  Onscons 28283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-1o 8518  df-2o 8519  df-nadd 8718  df-no 27696  df-slt 27697  df-bday 27698  df-sle 27799  df-sslt 27835  df-scut 27837  df-0s 27878  df-made 27895  df-old 27896  df-left 27898  df-right 27899  df-norec2 27991  df-adds 28002  df-ons 28284
This theorem is referenced by:  peano2ons  28297
  Copyright terms: Public domain W3C validator