MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodstr Structured version   Visualization version   GIF version

Theorem lmodstr 17270
Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
Hypothesis
Ref Expression
lmodstr.w 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
Assertion
Ref Expression
lmodstr 𝑊 Struct ⟨1, 6⟩

Proof of Theorem lmodstr
StepHypRef Expression
1 lmodstr.w . 2 𝑊 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
2 1nn 12223 . . . 4 1 ∈ ℕ
3 basendx 17153 . . . 4 (Base‘ndx) = 1
4 1lt2 12383 . . . 4 1 < 2
5 2nn 12285 . . . 4 2 ∈ ℕ
6 plusgndx 17223 . . . 4 (+g‘ndx) = 2
7 2lt5 12391 . . . 4 2 < 5
8 5nn 12298 . . . 4 5 ∈ ℕ
9 scandx 17259 . . . 4 (Scalar‘ndx) = 5
102, 3, 4, 5, 6, 7, 8, 9strle3 17093 . . 3 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} Struct ⟨1, 5⟩
11 6nn 12301 . . . 4 6 ∈ ℕ
12 vscandx 17264 . . . 4 ( ·𝑠 ‘ndx) = 6
1311, 12strle1 17091 . . 3 {⟨( ·𝑠 ‘ndx), · ⟩} Struct ⟨6, 6⟩
14 5lt6 12393 . . 3 5 < 6
1510, 13, 14strleun 17090 . 2 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝐹⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩}) Struct ⟨1, 6⟩
161, 15eqbrtri 5170 1 𝑊 Struct ⟨1, 6⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cun 3947  {csn 4629  {ctp 4633  cop 4635   class class class wbr 5149  cfv 6544  1c1 11111  2c2 12267  5c5 12270  6c6 12271   Struct cstr 17079  ndxcnx 17126  Basecbs 17144  +gcplusg 17197  Scalarcsca 17200   ·𝑠 cvsca 17201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-struct 17080  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-sca 17213  df-vsca 17214
This theorem is referenced by:  lmodbase  17271  lmodplusg  17272  lmodsca  17273  lmodvsca  17274  phlstr  17291
  Copyright terms: Public domain W3C validator