![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shftf | Structured version Visualization version GIF version |
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftf | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6672 | . . 3 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹 Fn 𝐵) | |
2 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
3 | 2 | shftfn 14967 | . . 3 ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
4 | 1, 3 | sylan 581 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
5 | oveq1 7368 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 − 𝐴) = (𝑦 − 𝐴)) | |
6 | 5 | eleq1d 2819 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 − 𝐴) ∈ 𝐵 ↔ (𝑦 − 𝐴) ∈ 𝐵)) |
7 | 6 | elrab 3649 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) |
8 | simpr 486 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ) | |
9 | simpl 484 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ) | |
10 | 2 | shftval 14968 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
11 | 8, 9, 10 | syl2an 597 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
12 | simpl 484 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐹:𝐵⟶𝐶) | |
13 | simpr 486 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝑦 − 𝐴) ∈ 𝐵) | |
14 | ffvelcdm 7036 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) | |
15 | 12, 13, 14 | syl2an 597 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) |
16 | 11, 15 | eqeltrd 2834 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
17 | 7, 16 | sylan2b 595 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
18 | 17 | ralrimiva 3140 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
19 | ffnfv 7070 | . 2 ⊢ ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)) | |
20 | 4, 18, 19 | sylanbrc 584 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 {crab 3406 Vcvv 3447 Fn wfn 6495 ⟶wf 6496 ‘cfv 6500 (class class class)co 7361 ℂcc 11057 − cmin 11393 shift cshi 14960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-ltxr 11202 df-sub 11395 df-shft 14961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |