MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftf Structured version   Visualization version   GIF version

Theorem shftf 14440
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftf ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem shftf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 6516 . . 3 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
2 shftfval.1 . . . 4 𝐹 ∈ V
32shftfn 14434 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
41, 3sylan 582 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
5 oveq1 7165 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
65eleq1d 2899 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐴) ∈ 𝐵 ↔ (𝑦𝐴) ∈ 𝐵))
76elrab 3682 . . . 4 (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵))
8 simpr 487 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simpl 485 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ)
102shftval 14435 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
118, 9, 10syl2an 597 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
12 simpl 485 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐹:𝐵𝐶)
13 simpr 487 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → (𝑦𝐴) ∈ 𝐵)
14 ffvelrn 6851 . . . . . 6 ((𝐹:𝐵𝐶 ∧ (𝑦𝐴) ∈ 𝐵) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1512, 13, 14syl2an 597 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1611, 15eqeltrd 2915 . . . 4 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
177, 16sylan2b 595 . . 3 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
1817ralrimiva 3184 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
19 ffnfv 6884 . 2 ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶))
204, 18, 19sylanbrc 585 1 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cmin 10872   shift cshi 14427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-ltxr 10682  df-sub 10874  df-shft 14428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator