| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > shftf | Structured version Visualization version GIF version | ||
| Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
| Ref | Expression |
|---|---|
| shftfval.1 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| shftf | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6706 | . . 3 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹 Fn 𝐵) | |
| 2 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
| 3 | 2 | shftfn 15092 | . . 3 ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
| 4 | 1, 3 | sylan 580 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
| 5 | oveq1 7412 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 − 𝐴) = (𝑦 − 𝐴)) | |
| 6 | 5 | eleq1d 2819 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 − 𝐴) ∈ 𝐵 ↔ (𝑦 − 𝐴) ∈ 𝐵)) |
| 7 | 6 | elrab 3671 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 9 | simpl 482 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ) | |
| 10 | 2 | shftval 15093 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
| 11 | 8, 9, 10 | syl2an 596 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
| 12 | simpl 482 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐹:𝐵⟶𝐶) | |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝑦 − 𝐴) ∈ 𝐵) | |
| 14 | ffvelcdm 7071 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) | |
| 15 | 12, 13, 14 | syl2an 596 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) |
| 16 | 11, 15 | eqeltrd 2834 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
| 17 | 7, 16 | sylan2b 594 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
| 18 | 17 | ralrimiva 3132 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
| 19 | ffnfv 7109 | . 2 ⊢ ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)) | |
| 20 | 4, 18, 19 | sylanbrc 583 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 − cmin 11466 shift cshi 15085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-shft 15086 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |