MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftf Structured version   Visualization version   GIF version

Theorem shftf 15128
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftf ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem shftf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 6747 . . 3 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
2 shftfval.1 . . . 4 𝐹 ∈ V
32shftfn 15122 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
41, 3sylan 579 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
5 oveq1 7455 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
65eleq1d 2829 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐴) ∈ 𝐵 ↔ (𝑦𝐴) ∈ 𝐵))
76elrab 3708 . . . 4 (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵))
8 simpr 484 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simpl 482 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ)
102shftval 15123 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
118, 9, 10syl2an 595 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
12 simpl 482 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐹:𝐵𝐶)
13 simpr 484 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → (𝑦𝐴) ∈ 𝐵)
14 ffvelcdm 7115 . . . . . 6 ((𝐹:𝐵𝐶 ∧ (𝑦𝐴) ∈ 𝐵) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1512, 13, 14syl2an 595 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1611, 15eqeltrd 2844 . . . 4 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
177, 16sylan2b 593 . . 3 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
1817ralrimiva 3152 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
19 ffnfv 7153 . 2 ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶))
204, 18, 19sylanbrc 582 1 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cmin 11520   shift cshi 15115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-shft 15116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator