![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shftf | Structured version Visualization version GIF version |
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftf | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6719 | . . 3 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹 Fn 𝐵) | |
2 | shftfval.1 | . . . 4 ⊢ 𝐹 ∈ V | |
3 | 2 | shftfn 15072 | . . 3 ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
4 | 1, 3 | sylan 578 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) |
5 | oveq1 7422 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 − 𝐴) = (𝑦 − 𝐴)) | |
6 | 5 | eleq1d 2811 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 − 𝐴) ∈ 𝐵 ↔ (𝑦 − 𝐴) ∈ 𝐵)) |
7 | 6 | elrab 3682 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) |
8 | simpr 483 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ) | |
9 | simpl 481 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ) | |
10 | 2 | shftval 15073 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
11 | 8, 9, 10 | syl2an 594 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦 − 𝐴))) |
12 | simpl 481 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → 𝐹:𝐵⟶𝐶) | |
13 | simpr 483 | . . . . . 6 ⊢ ((𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝑦 − 𝐴) ∈ 𝐵) | |
14 | ffvelcdm 7086 | . . . . . 6 ⊢ ((𝐹:𝐵⟶𝐶 ∧ (𝑦 − 𝐴) ∈ 𝐵) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) | |
15 | 12, 13, 14 | syl2an 594 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → (𝐹‘(𝑦 − 𝐴)) ∈ 𝐶) |
16 | 11, 15 | eqeltrd 2826 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦 − 𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
17 | 7, 16 | sylan2b 592 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
18 | 17 | ralrimiva 3136 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶) |
19 | ffnfv 7124 | . 2 ⊢ ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)) | |
20 | 4, 18, 19 | sylanbrc 581 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3420 Vcvv 3464 Fn wfn 6540 ⟶wf 6541 ‘cfv 6545 (class class class)co 7415 ℂcc 11146 − cmin 11484 shift cshi 15065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8725 df-en 8966 df-dom 8967 df-sdom 8968 df-pnf 11290 df-mnf 11291 df-ltxr 11293 df-sub 11486 df-shft 15066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |