MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftf Structured version   Visualization version   GIF version

Theorem shftf 14973
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftf ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem shftf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 6672 . . 3 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
2 shftfval.1 . . . 4 𝐹 ∈ V
32shftfn 14967 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
41, 3sylan 581 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
5 oveq1 7368 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
65eleq1d 2819 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐴) ∈ 𝐵 ↔ (𝑦𝐴) ∈ 𝐵))
76elrab 3649 . . . 4 (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵))
8 simpr 486 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simpl 484 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ)
102shftval 14968 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
118, 9, 10syl2an 597 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
12 simpl 484 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐹:𝐵𝐶)
13 simpr 486 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → (𝑦𝐴) ∈ 𝐵)
14 ffvelcdm 7036 . . . . . 6 ((𝐹:𝐵𝐶 ∧ (𝑦𝐴) ∈ 𝐵) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1512, 13, 14syl2an 597 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1611, 15eqeltrd 2834 . . . 4 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
177, 16sylan2b 595 . . 3 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
1817ralrimiva 3140 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
19 ffnfv 7070 . 2 ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶))
204, 18, 19sylanbrc 584 1 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3061  {crab 3406  Vcvv 3447   Fn wfn 6495  wf 6496  cfv 6500  (class class class)co 7361  cc 11057  cmin 11393   shift cshi 14960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-ltxr 11202  df-sub 11395  df-shft 14961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator