MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftf Structured version   Visualization version   GIF version

Theorem shftf 15024
Description: Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftf ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem shftf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 6708 . . 3 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
2 shftfval.1 . . . 4 𝐹 ∈ V
32shftfn 15018 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
41, 3sylan 579 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
5 oveq1 7409 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
65eleq1d 2810 . . . . 5 (𝑥 = 𝑦 → ((𝑥𝐴) ∈ 𝐵 ↔ (𝑦𝐴) ∈ 𝐵))
76elrab 3676 . . . 4 (𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵))
8 simpr 484 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simpl 482 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → 𝑦 ∈ ℂ)
102shftval 15019 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
118, 9, 10syl2an 595 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) = (𝐹‘(𝑦𝐴)))
12 simpl 482 . . . . . 6 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → 𝐹:𝐵𝐶)
13 simpr 484 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵) → (𝑦𝐴) ∈ 𝐵)
14 ffvelcdm 7074 . . . . . 6 ((𝐹:𝐵𝐶 ∧ (𝑦𝐴) ∈ 𝐵) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1512, 13, 14syl2an 595 . . . . 5 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → (𝐹‘(𝑦𝐴)) ∈ 𝐶)
1611, 15eqeltrd 2825 . . . 4 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝑦𝐴) ∈ 𝐵)) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
177, 16sylan2b 593 . . 3 (((𝐹:𝐵𝐶𝐴 ∈ ℂ) ∧ 𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}) → ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
1817ralrimiva 3138 . 2 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶)
19 ffnfv 7111 . 2 ((𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶 ↔ ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ∧ ∀𝑦 ∈ {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ((𝐹 shift 𝐴)‘𝑦) ∈ 𝐶))
204, 18, 19sylanbrc 582 1 ((𝐹:𝐵𝐶𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  {crab 3424  Vcvv 3466   Fn wfn 6529  wf 6530  cfv 6534  (class class class)co 7402  cc 11105  cmin 11442   shift cshi 15011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-ltxr 11251  df-sub 11444  df-shft 15012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator