| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sleadd2 | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| sleadd2 | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sleadd1 27958 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶))) | |
| 2 | addscom 27935 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 +s 𝐶) = (𝐶 +s 𝐴)) | |
| 3 | 2 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 +s 𝐶) = (𝐶 +s 𝐴)) |
| 4 | addscom 27935 | . . . 4 ⊢ ((𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) = (𝐶 +s 𝐵)) | |
| 5 | 4 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐵 +s 𝐶) = (𝐶 +s 𝐵)) |
| 6 | 3, 5 | breq12d 5136 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 +s 𝐶) ≤s (𝐵 +s 𝐶) ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵))) |
| 7 | 1, 6 | bitrd 279 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 No csur 27620 ≤s csle 27725 +s cadds 27928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-2o 8489 df-nadd 8686 df-no 27623 df-slt 27624 df-bday 27625 df-sle 27726 df-sslt 27762 df-scut 27764 df-0s 27805 df-made 27822 df-old 27823 df-left 27825 df-right 27826 df-norec2 27918 df-adds 27929 |
| This theorem is referenced by: sltadd2 27960 sleadd2d 27965 |
| Copyright terms: Public domain | W3C validator |