MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sleadd2 Structured version   Visualization version   GIF version

Theorem sleadd2 27302
Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 21-Jan-2025.)
Assertion
Ref Expression
sleadd2 ((ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → (ðī â‰Īs ðĩ ↔ (ðķ +s ðī) â‰Īs (ðķ +s ðĩ)))

Proof of Theorem sleadd2
StepHypRef Expression
1 sleadd1 27301 . 2 ((ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → (ðī â‰Īs ðĩ ↔ (ðī +s ðķ) â‰Īs (ðĩ +s ðķ)))
2 addscom 27281 . . . 4 ((ðī ∈ No ∧ ðķ ∈ No ) → (ðī +s ðķ) = (ðķ +s ðī))
323adant2 1132 . . 3 ((ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → (ðī +s ðķ) = (ðķ +s ðī))
4 addscom 27281 . . . 4 ((ðĩ ∈ No ∧ ðķ ∈ No ) → (ðĩ +s ðķ) = (ðķ +s ðĩ))
543adant1 1131 . . 3 ((ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → (ðĩ +s ðķ) = (ðķ +s ðĩ))
63, 5breq12d 5119 . 2 ((ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → ((ðī +s ðķ) â‰Īs (ðĩ +s ðķ) ↔ (ðķ +s ðī) â‰Īs (ðķ +s ðĩ)))
71, 6bitrd 279 1 ((ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → (ðī â‰Īs ðĩ ↔ (ðķ +s ðī) â‰Īs (ðķ +s ðĩ)))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106  (class class class)co 7358   No csur 26991   â‰Īs csle 27095   +s cadds 27274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-ot 4596  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-1o 8413  df-2o 8414  df-nadd 8613  df-no 26994  df-slt 26995  df-bday 26996  df-sle 27096  df-sslt 27124  df-scut 27126  df-0s 27166  df-made 27180  df-old 27181  df-left 27183  df-right 27184  df-norec2 27264  df-adds 27275
This theorem is referenced by:  sltadd2  27303  sleadd2d  27308
  Copyright terms: Public domain W3C validator