MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sleadd2d Structured version   Visualization version   GIF version

Theorem sleadd2d 27965
Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025.)
Hypotheses
Ref Expression
addscand.1 (𝜑𝐴 No )
addscand.2 (𝜑𝐵 No )
addscand.3 (𝜑𝐶 No )
Assertion
Ref Expression
sleadd2d (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵)))

Proof of Theorem sleadd2d
StepHypRef Expression
1 addscand.1 . 2 (𝜑𝐴 No )
2 addscand.2 . 2 (𝜑𝐵 No )
3 addscand.3 . 2 (𝜑𝐶 No )
4 sleadd2 27959 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵)))
51, 2, 3, 4syl3anc 1372 1 (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐶 +s 𝐴) ≤s (𝐶 +s 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2107   class class class wbr 5123  (class class class)co 7413   No csur 27620   ≤s csle 27725   +s cadds 27928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-1o 8488  df-2o 8489  df-nadd 8686  df-no 27623  df-slt 27624  df-bday 27625  df-sle 27726  df-sslt 27762  df-scut 27764  df-0s 27805  df-made 27822  df-old 27823  df-left 27825  df-right 27826  df-norec2 27918  df-adds 27929
This theorem is referenced by:  addsuniflem  27970  mulsuniflem  28111  n0sge0  28277
  Copyright terms: Public domain W3C validator