| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addscld | Structured version Visualization version GIF version | ||
| Description: Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| addscut.1 | ⊢ (𝜑 → 𝑋 ∈ No ) |
| addscut.2 | ⊢ (𝜑 → 𝑌 ∈ No ) |
| Ref | Expression |
|---|---|
| addscld | ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscut.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ No ) | |
| 2 | addscut.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ No ) | |
| 3 | 1, 2 | addscut 27908 | . 2 ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) |
| 4 | 3 | simp1d 1142 | 1 ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ∪ cun 3903 {csn 4579 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 No csur 27567 <<s csslt 27709 L cleft 27773 R cright 27774 +s cadds 27889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-0s 27756 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec2 27879 df-adds 27890 |
| This theorem is referenced by: addscl 27911 sleadd1 27919 sltadd2 27921 addsuniflem 27931 adds4d 27939 slt2addd 27943 addsbdaylem 27946 negsid 27970 addsubsassd 28008 addsubsd 28009 sltaddsubd 28018 slesubaddd 28020 subsubs4d 28021 addsubs4d 28027 mulsproplem5 28046 mulsproplem6 28047 mulsproplem7 28048 mulsproplem8 28049 mulsproplem9 28050 ssltmul1 28073 ssltmul2 28074 mulsuniflem 28075 addsdilem3 28079 addsdilem4 28080 addsdird 28083 mulsasslem3 28091 mulsunif2lem 28095 precsexlem8 28139 precsexlem9 28140 precsexlem11 28142 divsdird 28160 onaddscl 28197 onmulscl 28198 zscut 28318 twocut 28333 pw2divsdird 28358 pw2divsnegd 28359 avgslt1d 28362 avgslt2d 28363 halfcut 28364 addhalfcut 28365 pw2cut 28366 zs12ge0 28378 zs12bday 28379 |
| Copyright terms: Public domain | W3C validator |