Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1533
∈ wcel 2098 {cab 2703
∃wrex 3064 ∪
cun 3941 {csn 4623
class class class wbr 5141 ‘cfv 6536
(class class class)co 7404
No csur 27523 <<s csslt 27663 L cleft 27722 R cright 27723 +s
cadds 27826 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-1o 8464 df-2o 8465 df-nadd 8664 df-no 27526 df-slt 27527 df-bday 27528 df-sslt 27664 df-scut 27666 df-0s 27707 df-made 27724 df-old 27725 df-left 27727 df-right 27728 df-norec2 27816 df-adds 27827 |
This theorem is referenced by: addscl
27848 sleadd1
27856 sltadd2
27858 addsuniflem
27868 adds4d
27876 slt2addd
27880 negsid
27903 addsubsassd
27939 addsubsd
27940 sltaddsubd
27949 subsubs4d
27951 mulsproplem5
27970 mulsproplem6
27971 mulsproplem7
27972 mulsproplem8
27973 mulsproplem9
27974 ssltmul1
27997 ssltmul2
27998 mulsuniflem
27999 addsdilem3
28003 addsdilem4
28004 addsdird
28007 mulsasslem3
28015 mulsunif2lem
28019 precsexlem8
28062 precsexlem9
28063 precsexlem11
28065 |