| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addscld | Structured version Visualization version GIF version | ||
| Description: Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| addscut.1 | ⊢ (𝜑 → 𝑋 ∈ No ) |
| addscut.2 | ⊢ (𝜑 → 𝑌 ∈ No ) |
| Ref | Expression |
|---|---|
| addscld | ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscut.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ No ) | |
| 2 | addscut.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ No ) | |
| 3 | 1, 2 | addscut 27922 | . 2 ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) |
| 4 | 3 | simp1d 1142 | 1 ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 ∪ cun 3896 {csn 4575 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 No csur 27579 <<s csslt 27721 L cleft 27787 R cright 27788 +s cadds 27903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-nadd 8587 df-no 27582 df-slt 27583 df-bday 27584 df-sslt 27722 df-scut 27724 df-0s 27769 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec2 27893 df-adds 27904 |
| This theorem is referenced by: addscl 27925 sleadd1 27933 sltadd2 27935 addsuniflem 27945 adds4d 27953 slt2addd 27957 addsbdaylem 27960 negsid 27984 addsubsassd 28022 addsubsd 28023 sltaddsubd 28032 slesubaddd 28034 subsubs4d 28035 addsubs4d 28041 mulsproplem5 28060 mulsproplem6 28061 mulsproplem7 28062 mulsproplem8 28063 mulsproplem9 28064 ssltmul1 28087 ssltmul2 28088 mulsuniflem 28089 addsdilem3 28093 addsdilem4 28094 addsdird 28097 mulsasslem3 28105 mulsunif2lem 28109 precsexlem8 28153 precsexlem9 28154 precsexlem11 28156 divsdird 28174 onaddscl 28211 onmulscl 28212 zscut 28332 twocut 28347 pw2divsdird 28372 pw2divsnegd 28373 avgslt1d 28377 avgslt2d 28378 halfcut 28379 addhalfcut 28380 pw2cut 28381 pw2cut2 28383 zs12ge0 28394 zs12bday 28395 |
| Copyright terms: Public domain | W3C validator |