MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addscld Structured version   Visualization version   GIF version

Theorem addscld 27924
Description: Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addscut.1 (𝜑𝑋 No )
addscut.2 (𝜑𝑌 No )
Assertion
Ref Expression
addscld (𝜑 → (𝑋 +s 𝑌) ∈ No )

Proof of Theorem addscld
Dummy variables 𝑝 𝑙 𝑞 𝑚 𝑤 𝑟 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addscut.1 . . 3 (𝜑𝑋 No )
2 addscut.2 . . 3 (𝜑𝑌 No )
31, 2addscut 27922 . 2 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})))
43simp1d 1142 1 (𝜑 → (𝑋 +s 𝑌) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  cun 3896  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352   No csur 27579   <<s csslt 27721   L cleft 27787   R cright 27788   +s cadds 27903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sslt 27722  df-scut 27724  df-0s 27769  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec2 27893  df-adds 27904
This theorem is referenced by:  addscl  27925  sleadd1  27933  sltadd2  27935  addsuniflem  27945  adds4d  27953  slt2addd  27957  addsbdaylem  27960  negsid  27984  addsubsassd  28022  addsubsd  28023  sltaddsubd  28032  slesubaddd  28034  subsubs4d  28035  addsubs4d  28041  mulsproplem5  28060  mulsproplem6  28061  mulsproplem7  28062  mulsproplem8  28063  mulsproplem9  28064  ssltmul1  28087  ssltmul2  28088  mulsuniflem  28089  addsdilem3  28093  addsdilem4  28094  addsdird  28097  mulsasslem3  28105  mulsunif2lem  28109  precsexlem8  28153  precsexlem9  28154  precsexlem11  28156  divsdird  28174  onaddscl  28211  onmulscl  28212  zscut  28332  twocut  28347  pw2divsdird  28372  pw2divsnegd  28373  avgslt1d  28377  avgslt2d  28378  halfcut  28379  addhalfcut  28380  pw2cut  28381  pw2cut2  28383  zs12ge0  28394  zs12bday  28395
  Copyright terms: Public domain W3C validator