| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addscld | Structured version Visualization version GIF version | ||
| Description: Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| addscut.1 | ⊢ (𝜑 → 𝑋 ∈ No ) |
| addscut.2 | ⊢ (𝜑 → 𝑌 ∈ No ) |
| Ref | Expression |
|---|---|
| addscld | ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscut.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ No ) | |
| 2 | addscut.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ No ) | |
| 3 | 1, 2 | addscut 27892 | . 2 ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) |
| 4 | 3 | simp1d 1142 | 1 ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 ∪ cun 3915 {csn 4592 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 No csur 27558 <<s csslt 27699 L cleft 27760 R cright 27761 +s cadds 27873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-nadd 8633 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-0s 27743 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec2 27863 df-adds 27874 |
| This theorem is referenced by: addscl 27895 sleadd1 27903 sltadd2 27905 addsuniflem 27915 adds4d 27923 slt2addd 27927 addsbdaylem 27930 negsid 27954 addsubsassd 27992 addsubsd 27993 sltaddsubd 28002 slesubaddd 28004 subsubs4d 28005 addsubs4d 28011 mulsproplem5 28030 mulsproplem6 28031 mulsproplem7 28032 mulsproplem8 28033 mulsproplem9 28034 ssltmul1 28057 ssltmul2 28058 mulsuniflem 28059 addsdilem3 28063 addsdilem4 28064 addsdird 28067 mulsasslem3 28075 mulsunif2lem 28079 precsexlem8 28123 precsexlem9 28124 precsexlem11 28126 divsdird 28144 onaddscl 28181 onmulscl 28182 zscut 28302 twocut 28316 pw2divsdird 28338 pw2divsnegd 28339 halfcut 28340 addhalfcut 28341 pw2cut 28342 zs12ge0 28349 zs12bday 28350 |
| Copyright terms: Public domain | W3C validator |