| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addscld | Structured version Visualization version GIF version | ||
| Description: Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| addscut.1 | ⊢ (𝜑 → 𝑋 ∈ No ) |
| addscut.2 | ⊢ (𝜑 → 𝑌 ∈ No ) |
| Ref | Expression |
|---|---|
| addscld | ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addscut.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ No ) | |
| 2 | addscut.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ No ) | |
| 3 | 1, 2 | addscut 27947 | . 2 ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) |
| 4 | 3 | simp1d 1142 | 1 ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 ∪ cun 3929 {csn 4606 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 No csur 27620 <<s csslt 27761 L cleft 27820 R cright 27821 +s cadds 27928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-2o 8489 df-nadd 8686 df-no 27623 df-slt 27624 df-bday 27625 df-sslt 27762 df-scut 27764 df-0s 27805 df-made 27822 df-old 27823 df-left 27825 df-right 27826 df-norec2 27918 df-adds 27929 |
| This theorem is referenced by: addscl 27950 sleadd1 27958 sltadd2 27960 addsuniflem 27970 adds4d 27978 slt2addd 27982 addsbdaylem 27985 negsid 28009 addsubsassd 28047 addsubsd 28048 sltaddsubd 28057 slesubaddd 28059 subsubs4d 28060 addsubs4d 28066 mulsproplem5 28082 mulsproplem6 28083 mulsproplem7 28084 mulsproplem8 28085 mulsproplem9 28086 ssltmul1 28109 ssltmul2 28110 mulsuniflem 28111 addsdilem3 28115 addsdilem4 28116 addsdird 28119 mulsasslem3 28127 mulsunif2lem 28131 precsexlem8 28174 precsexlem9 28175 precsexlem11 28177 divsdird 28195 onaddscl 28222 onmulscl 28223 zscut 28329 nohalf 28343 halfcut 28352 addhalfcut 28355 pw2cut 28356 zs12bday 28360 |
| Copyright terms: Public domain | W3C validator |