|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > addscld | Structured version Visualization version GIF version | ||
| Description: Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| addscut.1 | ⊢ (𝜑 → 𝑋 ∈ No ) | 
| addscut.2 | ⊢ (𝜑 → 𝑌 ∈ No ) | 
| Ref | Expression | 
|---|---|
| addscld | ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addscut.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ No ) | |
| 2 | addscut.2 | . . 3 ⊢ (𝜑 → 𝑌 ∈ No ) | |
| 3 | 1, 2 | addscut 28012 | . 2 ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))) | 
| 4 | 3 | simp1d 1142 | 1 ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ No ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2713 ∃wrex 3069 ∪ cun 3948 {csn 4625 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 No csur 27685 <<s csslt 27826 L cleft 27885 R cright 27886 +s cadds 27993 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-1o 8507 df-2o 8508 df-nadd 8705 df-no 27688 df-slt 27689 df-bday 27690 df-sslt 27827 df-scut 27829 df-0s 27870 df-made 27887 df-old 27888 df-left 27890 df-right 27891 df-norec2 27983 df-adds 27994 | 
| This theorem is referenced by: addscl 28015 sleadd1 28023 sltadd2 28025 addsuniflem 28035 adds4d 28043 slt2addd 28047 addsbdaylem 28050 negsid 28074 addsubsassd 28112 addsubsd 28113 sltaddsubd 28122 slesubaddd 28124 subsubs4d 28125 addsubs4d 28131 mulsproplem5 28147 mulsproplem6 28148 mulsproplem7 28149 mulsproplem8 28150 mulsproplem9 28151 ssltmul1 28174 ssltmul2 28175 mulsuniflem 28176 addsdilem3 28180 addsdilem4 28181 addsdird 28184 mulsasslem3 28192 mulsunif2lem 28196 precsexlem8 28239 precsexlem9 28240 precsexlem11 28242 divsdird 28260 onaddscl 28287 onmulscl 28288 zscut 28394 nohalf 28408 halfcut 28417 addhalfcut 28420 pw2cut 28421 zs12bday 28425 | 
| Copyright terms: Public domain | W3C validator |