MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addscld Structured version   Visualization version   GIF version

Theorem addscld 27887
Description: Surreal numbers are closed under addition. Theorem 6(iii) of [Conway] p. 18. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addscut.1 (𝜑𝑋 No )
addscut.2 (𝜑𝑌 No )
Assertion
Ref Expression
addscld (𝜑 → (𝑋 +s 𝑌) ∈ No )

Proof of Theorem addscld
Dummy variables 𝑝 𝑙 𝑞 𝑚 𝑤 𝑟 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addscut.1 . . 3 (𝜑𝑋 No )
2 addscut.2 . . 3 (𝜑𝑌 No )
31, 2addscut 27885 . 2 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})))
43simp1d 1142 1 (𝜑 → (𝑋 +s 𝑌) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  cun 3912  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387   No csur 27551   <<s csslt 27692   L cleft 27753   R cright 27754   +s cadds 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec2 27856  df-adds 27867
This theorem is referenced by:  addscl  27888  sleadd1  27896  sltadd2  27898  addsuniflem  27908  adds4d  27916  slt2addd  27920  addsbdaylem  27923  negsid  27947  addsubsassd  27985  addsubsd  27986  sltaddsubd  27995  slesubaddd  27997  subsubs4d  27998  addsubs4d  28004  mulsproplem5  28023  mulsproplem6  28024  mulsproplem7  28025  mulsproplem8  28026  mulsproplem9  28027  ssltmul1  28050  ssltmul2  28051  mulsuniflem  28052  addsdilem3  28056  addsdilem4  28057  addsdird  28060  mulsasslem3  28068  mulsunif2lem  28072  precsexlem8  28116  precsexlem9  28117  precsexlem11  28119  divsdird  28137  onaddscl  28174  onmulscl  28175  zscut  28295  twocut  28309  pw2divsdird  28331  pw2divsnegd  28332  halfcut  28333  addhalfcut  28334  pw2cut  28335  zs12ge0  28342  zs12bday  28343
  Copyright terms: Public domain W3C validator