MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltadd2d Structured version   Visualization version   GIF version

Theorem sltadd2d 27941
Description: Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addscand.1 (𝜑𝐴 No )
addscand.2 (𝜑𝐵 No )
addscand.3 (𝜑𝐶 No )
Assertion
Ref Expression
sltadd2d (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵)))

Proof of Theorem sltadd2d
StepHypRef Expression
1 addscand.1 . 2 (𝜑𝐴 No )
2 addscand.2 . 2 (𝜑𝐵 No )
3 addscand.3 . 2 (𝜑𝐶 No )
4 sltadd2 27935 . 2 ((𝐴 No 𝐵 No 𝐶 No ) → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵)))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (𝐴 <s 𝐵 ↔ (𝐶 +s 𝐴) <s (𝐶 +s 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111   class class class wbr 5091  (class class class)co 7346   No csur 27579   <s cslt 27580   +s cadds 27903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec2 27893  df-adds 27904
This theorem is referenced by:  addsuniflem  27945  sltaddpos1d  27955  slt2addd  27957  sltp1d  27959  negsid  27984  sltsub2  28018  mulsproplem5  28060  mulsproplem6  28061  mulsproplem7  28062  mulsproplem8  28063  avgslt1d  28377  halfcut  28379  addhalfcut  28380  pw2cut2  28383  recut  28399
  Copyright terms: Public domain W3C validator